Solve for x
x=2\sqrt{19}+4\approx 12.717797887
x=4-2\sqrt{19}\approx -4.717797887
Graph
Share
Copied to clipboard
15x-\left(15x-120\right)=2x\left(x-8\right)
Variable x cannot be equal to any of the values 0,8 since division by zero is not defined. Multiply both sides of the equation by 15x\left(x-8\right), the least common multiple of x-8,x,15.
15x-15x+120=2x\left(x-8\right)
To find the opposite of 15x-120, find the opposite of each term.
120=2x\left(x-8\right)
Combine 15x and -15x to get 0.
120=2x^{2}-16x
Use the distributive property to multiply 2x by x-8.
2x^{2}-16x=120
Swap sides so that all variable terms are on the left hand side.
2x^{2}-16x-120=0
Subtract 120 from both sides.
x=\frac{-\left(-16\right)±\sqrt{\left(-16\right)^{2}-4\times 2\left(-120\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -16 for b, and -120 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-16\right)±\sqrt{256-4\times 2\left(-120\right)}}{2\times 2}
Square -16.
x=\frac{-\left(-16\right)±\sqrt{256-8\left(-120\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-16\right)±\sqrt{256+960}}{2\times 2}
Multiply -8 times -120.
x=\frac{-\left(-16\right)±\sqrt{1216}}{2\times 2}
Add 256 to 960.
x=\frac{-\left(-16\right)±8\sqrt{19}}{2\times 2}
Take the square root of 1216.
x=\frac{16±8\sqrt{19}}{2\times 2}
The opposite of -16 is 16.
x=\frac{16±8\sqrt{19}}{4}
Multiply 2 times 2.
x=\frac{8\sqrt{19}+16}{4}
Now solve the equation x=\frac{16±8\sqrt{19}}{4} when ± is plus. Add 16 to 8\sqrt{19}.
x=2\sqrt{19}+4
Divide 16+8\sqrt{19} by 4.
x=\frac{16-8\sqrt{19}}{4}
Now solve the equation x=\frac{16±8\sqrt{19}}{4} when ± is minus. Subtract 8\sqrt{19} from 16.
x=4-2\sqrt{19}
Divide 16-8\sqrt{19} by 4.
x=2\sqrt{19}+4 x=4-2\sqrt{19}
The equation is now solved.
15x-\left(15x-120\right)=2x\left(x-8\right)
Variable x cannot be equal to any of the values 0,8 since division by zero is not defined. Multiply both sides of the equation by 15x\left(x-8\right), the least common multiple of x-8,x,15.
15x-15x+120=2x\left(x-8\right)
To find the opposite of 15x-120, find the opposite of each term.
120=2x\left(x-8\right)
Combine 15x and -15x to get 0.
120=2x^{2}-16x
Use the distributive property to multiply 2x by x-8.
2x^{2}-16x=120
Swap sides so that all variable terms are on the left hand side.
\frac{2x^{2}-16x}{2}=\frac{120}{2}
Divide both sides by 2.
x^{2}+\left(-\frac{16}{2}\right)x=\frac{120}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-8x=\frac{120}{2}
Divide -16 by 2.
x^{2}-8x=60
Divide 120 by 2.
x^{2}-8x+\left(-4\right)^{2}=60+\left(-4\right)^{2}
Divide -8, the coefficient of the x term, by 2 to get -4. Then add the square of -4 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-8x+16=60+16
Square -4.
x^{2}-8x+16=76
Add 60 to 16.
\left(x-4\right)^{2}=76
Factor x^{2}-8x+16. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-4\right)^{2}}=\sqrt{76}
Take the square root of both sides of the equation.
x-4=2\sqrt{19} x-4=-2\sqrt{19}
Simplify.
x=2\sqrt{19}+4 x=4-2\sqrt{19}
Add 4 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}