Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x-4+\left(x+4\right)\times 4-\left(x^{2}-20\right)=0
Variable x cannot be equal to any of the values -4,4 since division by zero is not defined. Multiply both sides of the equation by \left(x-4\right)\left(x+4\right), the least common multiple of x+4,x-4,x^{2}-16.
x-4+4x+16-\left(x^{2}-20\right)=0
Use the distributive property to multiply x+4 by 4.
5x-4+16-\left(x^{2}-20\right)=0
Combine x and 4x to get 5x.
5x+12-\left(x^{2}-20\right)=0
Add -4 and 16 to get 12.
5x+12-x^{2}+20=0
To find the opposite of x^{2}-20, find the opposite of each term.
5x+32-x^{2}=0
Add 12 and 20 to get 32.
-x^{2}+5x+32=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-5±\sqrt{5^{2}-4\left(-1\right)\times 32}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 5 for b, and 32 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-5±\sqrt{25-4\left(-1\right)\times 32}}{2\left(-1\right)}
Square 5.
x=\frac{-5±\sqrt{25+4\times 32}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-5±\sqrt{25+128}}{2\left(-1\right)}
Multiply 4 times 32.
x=\frac{-5±\sqrt{153}}{2\left(-1\right)}
Add 25 to 128.
x=\frac{-5±3\sqrt{17}}{2\left(-1\right)}
Take the square root of 153.
x=\frac{-5±3\sqrt{17}}{-2}
Multiply 2 times -1.
x=\frac{3\sqrt{17}-5}{-2}
Now solve the equation x=\frac{-5±3\sqrt{17}}{-2} when ± is plus. Add -5 to 3\sqrt{17}.
x=\frac{5-3\sqrt{17}}{2}
Divide -5+3\sqrt{17} by -2.
x=\frac{-3\sqrt{17}-5}{-2}
Now solve the equation x=\frac{-5±3\sqrt{17}}{-2} when ± is minus. Subtract 3\sqrt{17} from -5.
x=\frac{3\sqrt{17}+5}{2}
Divide -5-3\sqrt{17} by -2.
x=\frac{5-3\sqrt{17}}{2} x=\frac{3\sqrt{17}+5}{2}
The equation is now solved.
x-4+\left(x+4\right)\times 4-\left(x^{2}-20\right)=0
Variable x cannot be equal to any of the values -4,4 since division by zero is not defined. Multiply both sides of the equation by \left(x-4\right)\left(x+4\right), the least common multiple of x+4,x-4,x^{2}-16.
x-4+4x+16-\left(x^{2}-20\right)=0
Use the distributive property to multiply x+4 by 4.
5x-4+16-\left(x^{2}-20\right)=0
Combine x and 4x to get 5x.
5x+12-\left(x^{2}-20\right)=0
Add -4 and 16 to get 12.
5x+12-x^{2}+20=0
To find the opposite of x^{2}-20, find the opposite of each term.
5x+32-x^{2}=0
Add 12 and 20 to get 32.
5x-x^{2}=-32
Subtract 32 from both sides. Anything subtracted from zero gives its negation.
-x^{2}+5x=-32
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-x^{2}+5x}{-1}=-\frac{32}{-1}
Divide both sides by -1.
x^{2}+\frac{5}{-1}x=-\frac{32}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-5x=-\frac{32}{-1}
Divide 5 by -1.
x^{2}-5x=32
Divide -32 by -1.
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=32+\left(-\frac{5}{2}\right)^{2}
Divide -5, the coefficient of the x term, by 2 to get -\frac{5}{2}. Then add the square of -\frac{5}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-5x+\frac{25}{4}=32+\frac{25}{4}
Square -\frac{5}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-5x+\frac{25}{4}=\frac{153}{4}
Add 32 to \frac{25}{4}.
\left(x-\frac{5}{2}\right)^{2}=\frac{153}{4}
Factor x^{2}-5x+\frac{25}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{\frac{153}{4}}
Take the square root of both sides of the equation.
x-\frac{5}{2}=\frac{3\sqrt{17}}{2} x-\frac{5}{2}=-\frac{3\sqrt{17}}{2}
Simplify.
x=\frac{3\sqrt{17}+5}{2} x=\frac{5-3\sqrt{17}}{2}
Add \frac{5}{2} to both sides of the equation.