Solve for x
x=-5
x=-1
Graph
Share
Copied to clipboard
1=\left(x+3\right)\left(-x+1\right)^{-1}\left(x+2\right)
Variable x cannot be equal to -3 since division by zero is not defined. Multiply both sides of the equation by x+3.
1=\left(x\left(-x+1\right)^{-1}+3\left(-x+1\right)^{-1}\right)\left(x+2\right)
Use the distributive property to multiply x+3 by \left(-x+1\right)^{-1}.
1=\left(-x+1\right)^{-1}x^{2}+5x\left(-x+1\right)^{-1}+6\left(-x+1\right)^{-1}
Use the distributive property to multiply x\left(-x+1\right)^{-1}+3\left(-x+1\right)^{-1} by x+2 and combine like terms.
\left(-x+1\right)^{-1}x^{2}+5x\left(-x+1\right)^{-1}+6\left(-x+1\right)^{-1}=1
Swap sides so that all variable terms are on the left hand side.
\left(-x+1\right)^{-1}x^{2}+5x\left(-x+1\right)^{-1}+6\left(-x+1\right)^{-1}-1=0
Subtract 1 from both sides.
\frac{1}{-x+1}x^{2}+5\times \frac{1}{-x+1}x-1+6\times \frac{1}{-x+1}=0
Reorder the terms.
1x^{2}+5\times 1x+\left(-x+1\right)\left(-1\right)+6\times 1=0
Variable x cannot be equal to 1 since division by zero is not defined. Multiply both sides of the equation by -x+1.
1x^{2}+5x+\left(-x+1\right)\left(-1\right)+6=0
Do the multiplications.
1x^{2}+5x+x-1+6=0
Use the distributive property to multiply -x+1 by -1.
1x^{2}+6x-1+6=0
Combine 5x and x to get 6x.
1x^{2}+6x+5=0
Add -1 and 6 to get 5.
x^{2}+6x+5=0
Reorder the terms.
x=\frac{-6±\sqrt{6^{2}-4\times 5}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 6 for b, and 5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-6±\sqrt{36-4\times 5}}{2}
Square 6.
x=\frac{-6±\sqrt{36-20}}{2}
Multiply -4 times 5.
x=\frac{-6±\sqrt{16}}{2}
Add 36 to -20.
x=\frac{-6±4}{2}
Take the square root of 16.
x=-\frac{2}{2}
Now solve the equation x=\frac{-6±4}{2} when ± is plus. Add -6 to 4.
x=-1
Divide -2 by 2.
x=-\frac{10}{2}
Now solve the equation x=\frac{-6±4}{2} when ± is minus. Subtract 4 from -6.
x=-5
Divide -10 by 2.
x=-1 x=-5
The equation is now solved.
1=\left(x+3\right)\left(-x+1\right)^{-1}\left(x+2\right)
Variable x cannot be equal to -3 since division by zero is not defined. Multiply both sides of the equation by x+3.
1=\left(x\left(-x+1\right)^{-1}+3\left(-x+1\right)^{-1}\right)\left(x+2\right)
Use the distributive property to multiply x+3 by \left(-x+1\right)^{-1}.
1=\left(-x+1\right)^{-1}x^{2}+5x\left(-x+1\right)^{-1}+6\left(-x+1\right)^{-1}
Use the distributive property to multiply x\left(-x+1\right)^{-1}+3\left(-x+1\right)^{-1} by x+2 and combine like terms.
\left(-x+1\right)^{-1}x^{2}+5x\left(-x+1\right)^{-1}+6\left(-x+1\right)^{-1}=1
Swap sides so that all variable terms are on the left hand side.
\frac{1}{-x+1}x^{2}+5\times \frac{1}{-x+1}x+6\times \frac{1}{-x+1}=1
Reorder the terms.
1x^{2}+5\times 1x+6\times 1=-x+1
Variable x cannot be equal to 1 since division by zero is not defined. Multiply both sides of the equation by -x+1.
1x^{2}+5x+6=-x+1
Do the multiplications.
1x^{2}+5x+6+x=1
Add x to both sides.
1x^{2}+6x+6=1
Combine 5x and x to get 6x.
1x^{2}+6x=1-6
Subtract 6 from both sides.
1x^{2}+6x=-5
Subtract 6 from 1 to get -5.
x^{2}+6x=-5
Reorder the terms.
x^{2}+6x+3^{2}=-5+3^{2}
Divide 6, the coefficient of the x term, by 2 to get 3. Then add the square of 3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+6x+9=-5+9
Square 3.
x^{2}+6x+9=4
Add -5 to 9.
\left(x+3\right)^{2}=4
Factor x^{2}+6x+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+3\right)^{2}}=\sqrt{4}
Take the square root of both sides of the equation.
x+3=2 x+3=-2
Simplify.
x=-1 x=-5
Subtract 3 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}