Solve for x
x = \frac{\sqrt{33} - 1}{4} \approx 1.186140662
x=\frac{-\sqrt{33}-1}{4}\approx -1.686140662
Graph
Quiz
Quadratic Equation
5 problems similar to:
\frac{ 1 }{ x+1 } + \frac{ 1 }{ x+2 } = \frac{ 4 }{ x+4 }
Share
Copied to clipboard
\left(x+2\right)\left(x+4\right)+\left(x+1\right)\left(x+4\right)=\left(x+1\right)\left(x+2\right)\times 4
Variable x cannot be equal to any of the values -4,-2,-1 since division by zero is not defined. Multiply both sides of the equation by \left(x+1\right)\left(x+2\right)\left(x+4\right), the least common multiple of x+1,x+2,x+4.
x^{2}+6x+8+\left(x+1\right)\left(x+4\right)=\left(x+1\right)\left(x+2\right)\times 4
Use the distributive property to multiply x+2 by x+4 and combine like terms.
x^{2}+6x+8+x^{2}+5x+4=\left(x+1\right)\left(x+2\right)\times 4
Use the distributive property to multiply x+1 by x+4 and combine like terms.
2x^{2}+6x+8+5x+4=\left(x+1\right)\left(x+2\right)\times 4
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}+11x+8+4=\left(x+1\right)\left(x+2\right)\times 4
Combine 6x and 5x to get 11x.
2x^{2}+11x+12=\left(x+1\right)\left(x+2\right)\times 4
Add 8 and 4 to get 12.
2x^{2}+11x+12=\left(x^{2}+3x+2\right)\times 4
Use the distributive property to multiply x+1 by x+2 and combine like terms.
2x^{2}+11x+12=4x^{2}+12x+8
Use the distributive property to multiply x^{2}+3x+2 by 4.
2x^{2}+11x+12-4x^{2}=12x+8
Subtract 4x^{2} from both sides.
-2x^{2}+11x+12=12x+8
Combine 2x^{2} and -4x^{2} to get -2x^{2}.
-2x^{2}+11x+12-12x=8
Subtract 12x from both sides.
-2x^{2}-x+12=8
Combine 11x and -12x to get -x.
-2x^{2}-x+12-8=0
Subtract 8 from both sides.
-2x^{2}-x+4=0
Subtract 8 from 12 to get 4.
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-2\right)\times 4}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, -1 for b, and 4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1+8\times 4}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-\left(-1\right)±\sqrt{1+32}}{2\left(-2\right)}
Multiply 8 times 4.
x=\frac{-\left(-1\right)±\sqrt{33}}{2\left(-2\right)}
Add 1 to 32.
x=\frac{1±\sqrt{33}}{2\left(-2\right)}
The opposite of -1 is 1.
x=\frac{1±\sqrt{33}}{-4}
Multiply 2 times -2.
x=\frac{\sqrt{33}+1}{-4}
Now solve the equation x=\frac{1±\sqrt{33}}{-4} when ± is plus. Add 1 to \sqrt{33}.
x=\frac{-\sqrt{33}-1}{4}
Divide 1+\sqrt{33} by -4.
x=\frac{1-\sqrt{33}}{-4}
Now solve the equation x=\frac{1±\sqrt{33}}{-4} when ± is minus. Subtract \sqrt{33} from 1.
x=\frac{\sqrt{33}-1}{4}
Divide 1-\sqrt{33} by -4.
x=\frac{-\sqrt{33}-1}{4} x=\frac{\sqrt{33}-1}{4}
The equation is now solved.
\left(x+2\right)\left(x+4\right)+\left(x+1\right)\left(x+4\right)=\left(x+1\right)\left(x+2\right)\times 4
Variable x cannot be equal to any of the values -4,-2,-1 since division by zero is not defined. Multiply both sides of the equation by \left(x+1\right)\left(x+2\right)\left(x+4\right), the least common multiple of x+1,x+2,x+4.
x^{2}+6x+8+\left(x+1\right)\left(x+4\right)=\left(x+1\right)\left(x+2\right)\times 4
Use the distributive property to multiply x+2 by x+4 and combine like terms.
x^{2}+6x+8+x^{2}+5x+4=\left(x+1\right)\left(x+2\right)\times 4
Use the distributive property to multiply x+1 by x+4 and combine like terms.
2x^{2}+6x+8+5x+4=\left(x+1\right)\left(x+2\right)\times 4
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}+11x+8+4=\left(x+1\right)\left(x+2\right)\times 4
Combine 6x and 5x to get 11x.
2x^{2}+11x+12=\left(x+1\right)\left(x+2\right)\times 4
Add 8 and 4 to get 12.
2x^{2}+11x+12=\left(x^{2}+3x+2\right)\times 4
Use the distributive property to multiply x+1 by x+2 and combine like terms.
2x^{2}+11x+12=4x^{2}+12x+8
Use the distributive property to multiply x^{2}+3x+2 by 4.
2x^{2}+11x+12-4x^{2}=12x+8
Subtract 4x^{2} from both sides.
-2x^{2}+11x+12=12x+8
Combine 2x^{2} and -4x^{2} to get -2x^{2}.
-2x^{2}+11x+12-12x=8
Subtract 12x from both sides.
-2x^{2}-x+12=8
Combine 11x and -12x to get -x.
-2x^{2}-x=8-12
Subtract 12 from both sides.
-2x^{2}-x=-4
Subtract 12 from 8 to get -4.
\frac{-2x^{2}-x}{-2}=-\frac{4}{-2}
Divide both sides by -2.
x^{2}+\left(-\frac{1}{-2}\right)x=-\frac{4}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}+\frac{1}{2}x=-\frac{4}{-2}
Divide -1 by -2.
x^{2}+\frac{1}{2}x=2
Divide -4 by -2.
x^{2}+\frac{1}{2}x+\left(\frac{1}{4}\right)^{2}=2+\left(\frac{1}{4}\right)^{2}
Divide \frac{1}{2}, the coefficient of the x term, by 2 to get \frac{1}{4}. Then add the square of \frac{1}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{1}{2}x+\frac{1}{16}=2+\frac{1}{16}
Square \frac{1}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{1}{2}x+\frac{1}{16}=\frac{33}{16}
Add 2 to \frac{1}{16}.
\left(x+\frac{1}{4}\right)^{2}=\frac{33}{16}
Factor x^{2}+\frac{1}{2}x+\frac{1}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{4}\right)^{2}}=\sqrt{\frac{33}{16}}
Take the square root of both sides of the equation.
x+\frac{1}{4}=\frac{\sqrt{33}}{4} x+\frac{1}{4}=-\frac{\sqrt{33}}{4}
Simplify.
x=\frac{\sqrt{33}-1}{4} x=\frac{-\sqrt{33}-1}{4}
Subtract \frac{1}{4} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}