Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{1}{x}-\frac{1}{x\left(x+1\right)}\times \frac{1}{\left(x+1\right)^{2}}
Multiply x+1 and x+1 to get \left(x+1\right)^{2}.
\frac{1}{x}-\frac{1}{x^{2}+x}\times \frac{1}{\left(x+1\right)^{2}}
Use the distributive property to multiply x by x+1.
\frac{1}{x}-\frac{1}{\left(x^{2}+x\right)\left(x+1\right)^{2}}
Multiply \frac{1}{x^{2}+x} times \frac{1}{\left(x+1\right)^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{x}-\frac{1}{x^{2}\left(x+1\right)^{2}+x\left(x+1\right)^{2}}
Use the distributive property to multiply x^{2}+x by \left(x+1\right)^{2}.
\frac{1}{x}-\frac{1}{x\left(x+1\right)^{3}}
Factor x^{2}\left(x+1\right)^{2}+x\left(x+1\right)^{2}.
\frac{\left(x+1\right)^{3}}{x\left(x+1\right)^{3}}-\frac{1}{x\left(x+1\right)^{3}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x and x\left(x+1\right)^{3} is x\left(x+1\right)^{3}. Multiply \frac{1}{x} times \frac{\left(x+1\right)^{3}}{\left(x+1\right)^{3}}.
\frac{\left(x+1\right)^{3}-1}{x\left(x+1\right)^{3}}
Since \frac{\left(x+1\right)^{3}}{x\left(x+1\right)^{3}} and \frac{1}{x\left(x+1\right)^{3}} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{3}+3x^{2}+3x\times 1^{2}+1^{3}-1}{x\left(x+1\right)^{3}}
Do the multiplications in \left(x+1\right)^{3}-1.
\frac{x^{3}+3x^{2}+3x}{x\left(x+1\right)^{3}}
Combine like terms in x^{3}+3x^{2}+3x\times 1^{2}+1^{3}-1.
\frac{x\left(x^{2}+3x+3\right)}{x\left(x+1\right)^{3}}
Factor the expressions that are not already factored in \frac{x^{3}+3x^{2}+3x}{x\left(x+1\right)^{3}}.
\frac{x^{2}+3x+3}{\left(x+1\right)^{3}}
Cancel out x in both numerator and denominator.
\frac{x^{2}+3x+3}{x^{3}+3x^{2}+3x+1}
Expand \left(x+1\right)^{3}.
\frac{1}{x}-\frac{1}{x\left(x+1\right)}\times \frac{1}{\left(x+1\right)^{2}}
Multiply x+1 and x+1 to get \left(x+1\right)^{2}.
\frac{1}{x}-\frac{1}{x^{2}+x}\times \frac{1}{\left(x+1\right)^{2}}
Use the distributive property to multiply x by x+1.
\frac{1}{x}-\frac{1}{\left(x^{2}+x\right)\left(x+1\right)^{2}}
Multiply \frac{1}{x^{2}+x} times \frac{1}{\left(x+1\right)^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{x}-\frac{1}{x^{2}\left(x+1\right)^{2}+x\left(x+1\right)^{2}}
Use the distributive property to multiply x^{2}+x by \left(x+1\right)^{2}.
\frac{1}{x}-\frac{1}{x\left(x+1\right)^{3}}
Factor x^{2}\left(x+1\right)^{2}+x\left(x+1\right)^{2}.
\frac{\left(x+1\right)^{3}}{x\left(x+1\right)^{3}}-\frac{1}{x\left(x+1\right)^{3}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x and x\left(x+1\right)^{3} is x\left(x+1\right)^{3}. Multiply \frac{1}{x} times \frac{\left(x+1\right)^{3}}{\left(x+1\right)^{3}}.
\frac{\left(x+1\right)^{3}-1}{x\left(x+1\right)^{3}}
Since \frac{\left(x+1\right)^{3}}{x\left(x+1\right)^{3}} and \frac{1}{x\left(x+1\right)^{3}} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{3}+3x^{2}+3x\times 1^{2}+1^{3}-1}{x\left(x+1\right)^{3}}
Do the multiplications in \left(x+1\right)^{3}-1.
\frac{x^{3}+3x^{2}+3x}{x\left(x+1\right)^{3}}
Combine like terms in x^{3}+3x^{2}+3x\times 1^{2}+1^{3}-1.
\frac{x\left(x^{2}+3x+3\right)}{x\left(x+1\right)^{3}}
Factor the expressions that are not already factored in \frac{x^{3}+3x^{2}+3x}{x\left(x+1\right)^{3}}.
\frac{x^{2}+3x+3}{\left(x+1\right)^{3}}
Cancel out x in both numerator and denominator.
\frac{x^{2}+3x+3}{x^{3}+3x^{2}+3x+1}
Expand \left(x+1\right)^{3}.