Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

1+2xx=6x
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
1+2x^{2}=6x
Multiply x and x to get x^{2}.
1+2x^{2}-6x=0
Subtract 6x from both sides.
2x^{2}-6x+1=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 2}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -6 for b, and 1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-6\right)±\sqrt{36-4\times 2}}{2\times 2}
Square -6.
x=\frac{-\left(-6\right)±\sqrt{36-8}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-6\right)±\sqrt{28}}{2\times 2}
Add 36 to -8.
x=\frac{-\left(-6\right)±2\sqrt{7}}{2\times 2}
Take the square root of 28.
x=\frac{6±2\sqrt{7}}{2\times 2}
The opposite of -6 is 6.
x=\frac{6±2\sqrt{7}}{4}
Multiply 2 times 2.
x=\frac{2\sqrt{7}+6}{4}
Now solve the equation x=\frac{6±2\sqrt{7}}{4} when ± is plus. Add 6 to 2\sqrt{7}.
x=\frac{\sqrt{7}+3}{2}
Divide 6+2\sqrt{7} by 4.
x=\frac{6-2\sqrt{7}}{4}
Now solve the equation x=\frac{6±2\sqrt{7}}{4} when ± is minus. Subtract 2\sqrt{7} from 6.
x=\frac{3-\sqrt{7}}{2}
Divide 6-2\sqrt{7} by 4.
x=\frac{\sqrt{7}+3}{2} x=\frac{3-\sqrt{7}}{2}
The equation is now solved.
1+2xx=6x
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
1+2x^{2}=6x
Multiply x and x to get x^{2}.
1+2x^{2}-6x=0
Subtract 6x from both sides.
2x^{2}-6x=-1
Subtract 1 from both sides. Anything subtracted from zero gives its negation.
\frac{2x^{2}-6x}{2}=-\frac{1}{2}
Divide both sides by 2.
x^{2}+\left(-\frac{6}{2}\right)x=-\frac{1}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-3x=-\frac{1}{2}
Divide -6 by 2.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=-\frac{1}{2}+\left(-\frac{3}{2}\right)^{2}
Divide -3, the coefficient of the x term, by 2 to get -\frac{3}{2}. Then add the square of -\frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-3x+\frac{9}{4}=-\frac{1}{2}+\frac{9}{4}
Square -\frac{3}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-3x+\frac{9}{4}=\frac{7}{4}
Add -\frac{1}{2} to \frac{9}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{3}{2}\right)^{2}=\frac{7}{4}
Factor x^{2}-3x+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{7}{4}}
Take the square root of both sides of the equation.
x-\frac{3}{2}=\frac{\sqrt{7}}{2} x-\frac{3}{2}=-\frac{\sqrt{7}}{2}
Simplify.
x=\frac{\sqrt{7}+3}{2} x=\frac{3-\sqrt{7}}{2}
Add \frac{3}{2} to both sides of the equation.