Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x+3+x=3x\left(x+3\right)
Variable x cannot be equal to any of the values -3,0 since division by zero is not defined. Multiply both sides of the equation by x\left(x+3\right), the least common multiple of x,x+3.
2x+3=3x\left(x+3\right)
Combine x and x to get 2x.
2x+3=3x^{2}+9x
Use the distributive property to multiply 3x by x+3.
2x+3-3x^{2}=9x
Subtract 3x^{2} from both sides.
2x+3-3x^{2}-9x=0
Subtract 9x from both sides.
-7x+3-3x^{2}=0
Combine 2x and -9x to get -7x.
-3x^{2}-7x+3=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\left(-3\right)\times 3}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, -7 for b, and 3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-7\right)±\sqrt{49-4\left(-3\right)\times 3}}{2\left(-3\right)}
Square -7.
x=\frac{-\left(-7\right)±\sqrt{49+12\times 3}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-\left(-7\right)±\sqrt{49+36}}{2\left(-3\right)}
Multiply 12 times 3.
x=\frac{-\left(-7\right)±\sqrt{85}}{2\left(-3\right)}
Add 49 to 36.
x=\frac{7±\sqrt{85}}{2\left(-3\right)}
The opposite of -7 is 7.
x=\frac{7±\sqrt{85}}{-6}
Multiply 2 times -3.
x=\frac{\sqrt{85}+7}{-6}
Now solve the equation x=\frac{7±\sqrt{85}}{-6} when ± is plus. Add 7 to \sqrt{85}.
x=\frac{-\sqrt{85}-7}{6}
Divide 7+\sqrt{85} by -6.
x=\frac{7-\sqrt{85}}{-6}
Now solve the equation x=\frac{7±\sqrt{85}}{-6} when ± is minus. Subtract \sqrt{85} from 7.
x=\frac{\sqrt{85}-7}{6}
Divide 7-\sqrt{85} by -6.
x=\frac{-\sqrt{85}-7}{6} x=\frac{\sqrt{85}-7}{6}
The equation is now solved.
x+3+x=3x\left(x+3\right)
Variable x cannot be equal to any of the values -3,0 since division by zero is not defined. Multiply both sides of the equation by x\left(x+3\right), the least common multiple of x,x+3.
2x+3=3x\left(x+3\right)
Combine x and x to get 2x.
2x+3=3x^{2}+9x
Use the distributive property to multiply 3x by x+3.
2x+3-3x^{2}=9x
Subtract 3x^{2} from both sides.
2x+3-3x^{2}-9x=0
Subtract 9x from both sides.
-7x+3-3x^{2}=0
Combine 2x and -9x to get -7x.
-7x-3x^{2}=-3
Subtract 3 from both sides. Anything subtracted from zero gives its negation.
-3x^{2}-7x=-3
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-3x^{2}-7x}{-3}=-\frac{3}{-3}
Divide both sides by -3.
x^{2}+\left(-\frac{7}{-3}\right)x=-\frac{3}{-3}
Dividing by -3 undoes the multiplication by -3.
x^{2}+\frac{7}{3}x=-\frac{3}{-3}
Divide -7 by -3.
x^{2}+\frac{7}{3}x=1
Divide -3 by -3.
x^{2}+\frac{7}{3}x+\left(\frac{7}{6}\right)^{2}=1+\left(\frac{7}{6}\right)^{2}
Divide \frac{7}{3}, the coefficient of the x term, by 2 to get \frac{7}{6}. Then add the square of \frac{7}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{7}{3}x+\frac{49}{36}=1+\frac{49}{36}
Square \frac{7}{6} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{7}{3}x+\frac{49}{36}=\frac{85}{36}
Add 1 to \frac{49}{36}.
\left(x+\frac{7}{6}\right)^{2}=\frac{85}{36}
Factor x^{2}+\frac{7}{3}x+\frac{49}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{7}{6}\right)^{2}}=\sqrt{\frac{85}{36}}
Take the square root of both sides of the equation.
x+\frac{7}{6}=\frac{\sqrt{85}}{6} x+\frac{7}{6}=-\frac{\sqrt{85}}{6}
Simplify.
x=\frac{\sqrt{85}-7}{6} x=\frac{-\sqrt{85}-7}{6}
Subtract \frac{7}{6} from both sides of the equation.