Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(x+2\right)\left(x+4\right)+x\left(x+4\right)+x\left(x+2\right)=0
Variable x cannot be equal to any of the values -4,-2,0 since division by zero is not defined. Multiply both sides of the equation by x\left(x+2\right)\left(x+4\right), the least common multiple of x,x+2,x+4.
x^{2}+6x+8+x\left(x+4\right)+x\left(x+2\right)=0
Use the distributive property to multiply x+2 by x+4 and combine like terms.
x^{2}+6x+8+x^{2}+4x+x\left(x+2\right)=0
Use the distributive property to multiply x by x+4.
2x^{2}+6x+8+4x+x\left(x+2\right)=0
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}+10x+8+x\left(x+2\right)=0
Combine 6x and 4x to get 10x.
2x^{2}+10x+8+x^{2}+2x=0
Use the distributive property to multiply x by x+2.
3x^{2}+10x+8+2x=0
Combine 2x^{2} and x^{2} to get 3x^{2}.
3x^{2}+12x+8=0
Combine 10x and 2x to get 12x.
x=\frac{-12±\sqrt{12^{2}-4\times 3\times 8}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, 12 for b, and 8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-12±\sqrt{144-4\times 3\times 8}}{2\times 3}
Square 12.
x=\frac{-12±\sqrt{144-12\times 8}}{2\times 3}
Multiply -4 times 3.
x=\frac{-12±\sqrt{144-96}}{2\times 3}
Multiply -12 times 8.
x=\frac{-12±\sqrt{48}}{2\times 3}
Add 144 to -96.
x=\frac{-12±4\sqrt{3}}{2\times 3}
Take the square root of 48.
x=\frac{-12±4\sqrt{3}}{6}
Multiply 2 times 3.
x=\frac{4\sqrt{3}-12}{6}
Now solve the equation x=\frac{-12±4\sqrt{3}}{6} when ± is plus. Add -12 to 4\sqrt{3}.
x=\frac{2\sqrt{3}}{3}-2
Divide -12+4\sqrt{3} by 6.
x=\frac{-4\sqrt{3}-12}{6}
Now solve the equation x=\frac{-12±4\sqrt{3}}{6} when ± is minus. Subtract 4\sqrt{3} from -12.
x=-\frac{2\sqrt{3}}{3}-2
Divide -12-4\sqrt{3} by 6.
x=\frac{2\sqrt{3}}{3}-2 x=-\frac{2\sqrt{3}}{3}-2
The equation is now solved.
\left(x+2\right)\left(x+4\right)+x\left(x+4\right)+x\left(x+2\right)=0
Variable x cannot be equal to any of the values -4,-2,0 since division by zero is not defined. Multiply both sides of the equation by x\left(x+2\right)\left(x+4\right), the least common multiple of x,x+2,x+4.
x^{2}+6x+8+x\left(x+4\right)+x\left(x+2\right)=0
Use the distributive property to multiply x+2 by x+4 and combine like terms.
x^{2}+6x+8+x^{2}+4x+x\left(x+2\right)=0
Use the distributive property to multiply x by x+4.
2x^{2}+6x+8+4x+x\left(x+2\right)=0
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}+10x+8+x\left(x+2\right)=0
Combine 6x and 4x to get 10x.
2x^{2}+10x+8+x^{2}+2x=0
Use the distributive property to multiply x by x+2.
3x^{2}+10x+8+2x=0
Combine 2x^{2} and x^{2} to get 3x^{2}.
3x^{2}+12x+8=0
Combine 10x and 2x to get 12x.
3x^{2}+12x=-8
Subtract 8 from both sides. Anything subtracted from zero gives its negation.
\frac{3x^{2}+12x}{3}=-\frac{8}{3}
Divide both sides by 3.
x^{2}+\frac{12}{3}x=-\frac{8}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}+4x=-\frac{8}{3}
Divide 12 by 3.
x^{2}+4x+2^{2}=-\frac{8}{3}+2^{2}
Divide 4, the coefficient of the x term, by 2 to get 2. Then add the square of 2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+4x+4=-\frac{8}{3}+4
Square 2.
x^{2}+4x+4=\frac{4}{3}
Add -\frac{8}{3} to 4.
\left(x+2\right)^{2}=\frac{4}{3}
Factor x^{2}+4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+2\right)^{2}}=\sqrt{\frac{4}{3}}
Take the square root of both sides of the equation.
x+2=\frac{2\sqrt{3}}{3} x+2=-\frac{2\sqrt{3}}{3}
Simplify.
x=\frac{2\sqrt{3}}{3}-2 x=-\frac{2\sqrt{3}}{3}-2
Subtract 2 from both sides of the equation.