Solve for x
x=10\sqrt{2}+50\approx 64.142135624
x=50-10\sqrt{2}\approx 35.857864376
Graph
Quiz
Quadratic Equation
5 problems similar to:
\frac{ 1 }{ x } + \frac{ 1 }{ 100-x } = \frac{ 1 }{ 23 }
Share
Copied to clipboard
23x-2300-23x=x\left(x-100\right)
Variable x cannot be equal to any of the values 0,100 since division by zero is not defined. Multiply both sides of the equation by 23x\left(x-100\right), the least common multiple of x,100-x,23.
-2300=x\left(x-100\right)
Combine 23x and -23x to get 0.
-2300=x^{2}-100x
Use the distributive property to multiply x by x-100.
x^{2}-100x=-2300
Swap sides so that all variable terms are on the left hand side.
x^{2}-100x+2300=0
Add 2300 to both sides.
x=\frac{-\left(-100\right)±\sqrt{\left(-100\right)^{2}-4\times 2300}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -100 for b, and 2300 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-100\right)±\sqrt{10000-4\times 2300}}{2}
Square -100.
x=\frac{-\left(-100\right)±\sqrt{10000-9200}}{2}
Multiply -4 times 2300.
x=\frac{-\left(-100\right)±\sqrt{800}}{2}
Add 10000 to -9200.
x=\frac{-\left(-100\right)±20\sqrt{2}}{2}
Take the square root of 800.
x=\frac{100±20\sqrt{2}}{2}
The opposite of -100 is 100.
x=\frac{20\sqrt{2}+100}{2}
Now solve the equation x=\frac{100±20\sqrt{2}}{2} when ± is plus. Add 100 to 20\sqrt{2}.
x=10\sqrt{2}+50
Divide 100+20\sqrt{2} by 2.
x=\frac{100-20\sqrt{2}}{2}
Now solve the equation x=\frac{100±20\sqrt{2}}{2} when ± is minus. Subtract 20\sqrt{2} from 100.
x=50-10\sqrt{2}
Divide 100-20\sqrt{2} by 2.
x=10\sqrt{2}+50 x=50-10\sqrt{2}
The equation is now solved.
23x-2300-23x=x\left(x-100\right)
Variable x cannot be equal to any of the values 0,100 since division by zero is not defined. Multiply both sides of the equation by 23x\left(x-100\right), the least common multiple of x,100-x,23.
-2300=x\left(x-100\right)
Combine 23x and -23x to get 0.
-2300=x^{2}-100x
Use the distributive property to multiply x by x-100.
x^{2}-100x=-2300
Swap sides so that all variable terms are on the left hand side.
x^{2}-100x+\left(-50\right)^{2}=-2300+\left(-50\right)^{2}
Divide -100, the coefficient of the x term, by 2 to get -50. Then add the square of -50 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-100x+2500=-2300+2500
Square -50.
x^{2}-100x+2500=200
Add -2300 to 2500.
\left(x-50\right)^{2}=200
Factor x^{2}-100x+2500. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-50\right)^{2}}=\sqrt{200}
Take the square root of both sides of the equation.
x-50=10\sqrt{2} x-50=-10\sqrt{2}
Simplify.
x=10\sqrt{2}+50 x=50-10\sqrt{2}
Add 50 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}