Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{m+3}{\left(m-3\right)\left(m+3\right)}-\frac{m-3}{\left(m-3\right)\left(m+3\right)}-\frac{6-2m}{\left(m-3\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of m-3 and m+3 is \left(m-3\right)\left(m+3\right). Multiply \frac{1}{m-3} times \frac{m+3}{m+3}. Multiply \frac{1}{m+3} times \frac{m-3}{m-3}.
\frac{m+3-\left(m-3\right)}{\left(m-3\right)\left(m+3\right)}-\frac{6-2m}{\left(m-3\right)^{2}}
Since \frac{m+3}{\left(m-3\right)\left(m+3\right)} and \frac{m-3}{\left(m-3\right)\left(m+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{m+3-m+3}{\left(m-3\right)\left(m+3\right)}-\frac{6-2m}{\left(m-3\right)^{2}}
Do the multiplications in m+3-\left(m-3\right).
\frac{6}{\left(m-3\right)\left(m+3\right)}-\frac{6-2m}{\left(m-3\right)^{2}}
Combine like terms in m+3-m+3.
\frac{6\left(m-3\right)}{\left(m+3\right)\left(m-3\right)^{2}}-\frac{\left(6-2m\right)\left(m+3\right)}{\left(m+3\right)\left(m-3\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(m-3\right)\left(m+3\right) and \left(m-3\right)^{2} is \left(m+3\right)\left(m-3\right)^{2}. Multiply \frac{6}{\left(m-3\right)\left(m+3\right)} times \frac{m-3}{m-3}. Multiply \frac{6-2m}{\left(m-3\right)^{2}} times \frac{m+3}{m+3}.
\frac{6\left(m-3\right)-\left(6-2m\right)\left(m+3\right)}{\left(m+3\right)\left(m-3\right)^{2}}
Since \frac{6\left(m-3\right)}{\left(m+3\right)\left(m-3\right)^{2}} and \frac{\left(6-2m\right)\left(m+3\right)}{\left(m+3\right)\left(m-3\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{6m-18-6m-18+2m^{2}+6m}{\left(m+3\right)\left(m-3\right)^{2}}
Do the multiplications in 6\left(m-3\right)-\left(6-2m\right)\left(m+3\right).
\frac{6m-36+2m^{2}}{\left(m+3\right)\left(m-3\right)^{2}}
Combine like terms in 6m-18-6m-18+2m^{2}+6m.
\frac{2\left(m-3\right)\left(m+6\right)}{\left(m+3\right)\left(m-3\right)^{2}}
Factor the expressions that are not already factored in \frac{6m-36+2m^{2}}{\left(m+3\right)\left(m-3\right)^{2}}.
\frac{2\left(m+6\right)}{\left(m-3\right)\left(m+3\right)}
Cancel out m-3 in both numerator and denominator.
\frac{2\left(m+6\right)}{m^{2}-9}
Expand \left(m-3\right)\left(m+3\right).
\frac{2m+12}{m^{2}-9}
Use the distributive property to multiply 2 by m+6.
\frac{m+3}{\left(m-3\right)\left(m+3\right)}-\frac{m-3}{\left(m-3\right)\left(m+3\right)}-\frac{6-2m}{\left(m-3\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of m-3 and m+3 is \left(m-3\right)\left(m+3\right). Multiply \frac{1}{m-3} times \frac{m+3}{m+3}. Multiply \frac{1}{m+3} times \frac{m-3}{m-3}.
\frac{m+3-\left(m-3\right)}{\left(m-3\right)\left(m+3\right)}-\frac{6-2m}{\left(m-3\right)^{2}}
Since \frac{m+3}{\left(m-3\right)\left(m+3\right)} and \frac{m-3}{\left(m-3\right)\left(m+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{m+3-m+3}{\left(m-3\right)\left(m+3\right)}-\frac{6-2m}{\left(m-3\right)^{2}}
Do the multiplications in m+3-\left(m-3\right).
\frac{6}{\left(m-3\right)\left(m+3\right)}-\frac{6-2m}{\left(m-3\right)^{2}}
Combine like terms in m+3-m+3.
\frac{6\left(m-3\right)}{\left(m+3\right)\left(m-3\right)^{2}}-\frac{\left(6-2m\right)\left(m+3\right)}{\left(m+3\right)\left(m-3\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(m-3\right)\left(m+3\right) and \left(m-3\right)^{2} is \left(m+3\right)\left(m-3\right)^{2}. Multiply \frac{6}{\left(m-3\right)\left(m+3\right)} times \frac{m-3}{m-3}. Multiply \frac{6-2m}{\left(m-3\right)^{2}} times \frac{m+3}{m+3}.
\frac{6\left(m-3\right)-\left(6-2m\right)\left(m+3\right)}{\left(m+3\right)\left(m-3\right)^{2}}
Since \frac{6\left(m-3\right)}{\left(m+3\right)\left(m-3\right)^{2}} and \frac{\left(6-2m\right)\left(m+3\right)}{\left(m+3\right)\left(m-3\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{6m-18-6m-18+2m^{2}+6m}{\left(m+3\right)\left(m-3\right)^{2}}
Do the multiplications in 6\left(m-3\right)-\left(6-2m\right)\left(m+3\right).
\frac{6m-36+2m^{2}}{\left(m+3\right)\left(m-3\right)^{2}}
Combine like terms in 6m-18-6m-18+2m^{2}+6m.
\frac{2\left(m-3\right)\left(m+6\right)}{\left(m+3\right)\left(m-3\right)^{2}}
Factor the expressions that are not already factored in \frac{6m-36+2m^{2}}{\left(m+3\right)\left(m-3\right)^{2}}.
\frac{2\left(m+6\right)}{\left(m-3\right)\left(m+3\right)}
Cancel out m-3 in both numerator and denominator.
\frac{2\left(m+6\right)}{m^{2}-9}
Expand \left(m-3\right)\left(m+3\right).
\frac{2m+12}{m^{2}-9}
Use the distributive property to multiply 2 by m+6.