Evaluate
0
Factor
0
Share
Copied to clipboard
\frac{4}{36}-\frac{3}{36}+\frac{1}{8}-\frac{23}{9}-\left(\frac{3}{8}+\frac{1}{3}-\frac{5}{2}-\frac{1}{6}\right)+\frac{4}{9}
Least common multiple of 9 and 12 is 36. Convert \frac{1}{9} and \frac{1}{12} to fractions with denominator 36.
\frac{4-3}{36}+\frac{1}{8}-\frac{23}{9}-\left(\frac{3}{8}+\frac{1}{3}-\frac{5}{2}-\frac{1}{6}\right)+\frac{4}{9}
Since \frac{4}{36} and \frac{3}{36} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{36}+\frac{1}{8}-\frac{23}{9}-\left(\frac{3}{8}+\frac{1}{3}-\frac{5}{2}-\frac{1}{6}\right)+\frac{4}{9}
Subtract 3 from 4 to get 1.
\frac{2}{72}+\frac{9}{72}-\frac{23}{9}-\left(\frac{3}{8}+\frac{1}{3}-\frac{5}{2}-\frac{1}{6}\right)+\frac{4}{9}
Least common multiple of 36 and 8 is 72. Convert \frac{1}{36} and \frac{1}{8} to fractions with denominator 72.
\frac{2+9}{72}-\frac{23}{9}-\left(\frac{3}{8}+\frac{1}{3}-\frac{5}{2}-\frac{1}{6}\right)+\frac{4}{9}
Since \frac{2}{72} and \frac{9}{72} have the same denominator, add them by adding their numerators.
\frac{11}{72}-\frac{23}{9}-\left(\frac{3}{8}+\frac{1}{3}-\frac{5}{2}-\frac{1}{6}\right)+\frac{4}{9}
Add 2 and 9 to get 11.
\frac{11}{72}-\frac{184}{72}-\left(\frac{3}{8}+\frac{1}{3}-\frac{5}{2}-\frac{1}{6}\right)+\frac{4}{9}
Least common multiple of 72 and 9 is 72. Convert \frac{11}{72} and \frac{23}{9} to fractions with denominator 72.
\frac{11-184}{72}-\left(\frac{3}{8}+\frac{1}{3}-\frac{5}{2}-\frac{1}{6}\right)+\frac{4}{9}
Since \frac{11}{72} and \frac{184}{72} have the same denominator, subtract them by subtracting their numerators.
-\frac{173}{72}-\left(\frac{3}{8}+\frac{1}{3}-\frac{5}{2}-\frac{1}{6}\right)+\frac{4}{9}
Subtract 184 from 11 to get -173.
-\frac{173}{72}-\left(\frac{9}{24}+\frac{8}{24}-\frac{5}{2}-\frac{1}{6}\right)+\frac{4}{9}
Least common multiple of 8 and 3 is 24. Convert \frac{3}{8} and \frac{1}{3} to fractions with denominator 24.
-\frac{173}{72}-\left(\frac{9+8}{24}-\frac{5}{2}-\frac{1}{6}\right)+\frac{4}{9}
Since \frac{9}{24} and \frac{8}{24} have the same denominator, add them by adding their numerators.
-\frac{173}{72}-\left(\frac{17}{24}-\frac{5}{2}-\frac{1}{6}\right)+\frac{4}{9}
Add 9 and 8 to get 17.
-\frac{173}{72}-\left(\frac{17}{24}-\frac{60}{24}-\frac{1}{6}\right)+\frac{4}{9}
Least common multiple of 24 and 2 is 24. Convert \frac{17}{24} and \frac{5}{2} to fractions with denominator 24.
-\frac{173}{72}-\left(\frac{17-60}{24}-\frac{1}{6}\right)+\frac{4}{9}
Since \frac{17}{24} and \frac{60}{24} have the same denominator, subtract them by subtracting their numerators.
-\frac{173}{72}-\left(-\frac{43}{24}-\frac{1}{6}\right)+\frac{4}{9}
Subtract 60 from 17 to get -43.
-\frac{173}{72}-\left(-\frac{43}{24}-\frac{4}{24}\right)+\frac{4}{9}
Least common multiple of 24 and 6 is 24. Convert -\frac{43}{24} and \frac{1}{6} to fractions with denominator 24.
-\frac{173}{72}-\frac{-43-4}{24}+\frac{4}{9}
Since -\frac{43}{24} and \frac{4}{24} have the same denominator, subtract them by subtracting their numerators.
-\frac{173}{72}-\left(-\frac{47}{24}\right)+\frac{4}{9}
Subtract 4 from -43 to get -47.
-\frac{173}{72}+\frac{47}{24}+\frac{4}{9}
The opposite of -\frac{47}{24} is \frac{47}{24}.
-\frac{173}{72}+\frac{141}{72}+\frac{4}{9}
Least common multiple of 72 and 24 is 72. Convert -\frac{173}{72} and \frac{47}{24} to fractions with denominator 72.
\frac{-173+141}{72}+\frac{4}{9}
Since -\frac{173}{72} and \frac{141}{72} have the same denominator, add them by adding their numerators.
\frac{-32}{72}+\frac{4}{9}
Add -173 and 141 to get -32.
-\frac{4}{9}+\frac{4}{9}
Reduce the fraction \frac{-32}{72} to lowest terms by extracting and canceling out 8.
0
Add -\frac{4}{9} and \frac{4}{9} to get 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}