Solve for x
x = \frac{2550}{283} = 9\frac{3}{283} \approx 9.010600707
Graph
Share
Copied to clipboard
150x\times \frac{1}{8.5}=150x\times \frac{1}{150}+150
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 150x, the least common multiple of 150,x.
150x\times \frac{10}{85}=150x\times \frac{1}{150}+150
Expand \frac{1}{8.5} by multiplying both numerator and the denominator by 10.
150x\times \frac{2}{17}=150x\times \frac{1}{150}+150
Reduce the fraction \frac{10}{85} to lowest terms by extracting and canceling out 5.
\frac{150\times 2}{17}x=150x\times \frac{1}{150}+150
Express 150\times \frac{2}{17} as a single fraction.
\frac{300}{17}x=150x\times \frac{1}{150}+150
Multiply 150 and 2 to get 300.
\frac{300}{17}x=x+150
Cancel out 150 and 150.
\frac{300}{17}x-x=150
Subtract x from both sides.
\frac{283}{17}x=150
Combine \frac{300}{17}x and -x to get \frac{283}{17}x.
x=150\times \frac{17}{283}
Multiply both sides by \frac{17}{283}, the reciprocal of \frac{283}{17}.
x=\frac{150\times 17}{283}
Express 150\times \frac{17}{283} as a single fraction.
x=\frac{2550}{283}
Multiply 150 and 17 to get 2550.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}