Solve for x
x=36
x=4
Graph
Share
Copied to clipboard
\left(\frac{1}{8}x+\frac{3}{2}\right)^{2}=\left(\sqrt{x}\right)^{2}
Square both sides of the equation.
\frac{1}{64}x^{2}+\frac{3}{8}x+\frac{9}{4}=\left(\sqrt{x}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\frac{1}{8}x+\frac{3}{2}\right)^{2}.
\frac{1}{64}x^{2}+\frac{3}{8}x+\frac{9}{4}=x
Calculate \sqrt{x} to the power of 2 and get x.
\frac{1}{64}x^{2}+\frac{3}{8}x+\frac{9}{4}-x=0
Subtract x from both sides.
\frac{1}{64}x^{2}-\frac{5}{8}x+\frac{9}{4}=0
Combine \frac{3}{8}x and -x to get -\frac{5}{8}x.
x=\frac{-\left(-\frac{5}{8}\right)±\sqrt{\left(-\frac{5}{8}\right)^{2}-4\times \frac{1}{64}\times \frac{9}{4}}}{2\times \frac{1}{64}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{1}{64} for a, -\frac{5}{8} for b, and \frac{9}{4} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{5}{8}\right)±\sqrt{\frac{25}{64}-4\times \frac{1}{64}\times \frac{9}{4}}}{2\times \frac{1}{64}}
Square -\frac{5}{8} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-\frac{5}{8}\right)±\sqrt{\frac{25}{64}-\frac{1}{16}\times \frac{9}{4}}}{2\times \frac{1}{64}}
Multiply -4 times \frac{1}{64}.
x=\frac{-\left(-\frac{5}{8}\right)±\sqrt{\frac{25-9}{64}}}{2\times \frac{1}{64}}
Multiply -\frac{1}{16} times \frac{9}{4} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-\frac{5}{8}\right)±\sqrt{\frac{1}{4}}}{2\times \frac{1}{64}}
Add \frac{25}{64} to -\frac{9}{64} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-\frac{5}{8}\right)±\frac{1}{2}}{2\times \frac{1}{64}}
Take the square root of \frac{1}{4}.
x=\frac{\frac{5}{8}±\frac{1}{2}}{2\times \frac{1}{64}}
The opposite of -\frac{5}{8} is \frac{5}{8}.
x=\frac{\frac{5}{8}±\frac{1}{2}}{\frac{1}{32}}
Multiply 2 times \frac{1}{64}.
x=\frac{\frac{9}{8}}{\frac{1}{32}}
Now solve the equation x=\frac{\frac{5}{8}±\frac{1}{2}}{\frac{1}{32}} when ± is plus. Add \frac{5}{8} to \frac{1}{2} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=36
Divide \frac{9}{8} by \frac{1}{32} by multiplying \frac{9}{8} by the reciprocal of \frac{1}{32}.
x=\frac{\frac{1}{8}}{\frac{1}{32}}
Now solve the equation x=\frac{\frac{5}{8}±\frac{1}{2}}{\frac{1}{32}} when ± is minus. Subtract \frac{1}{2} from \frac{5}{8} by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
x=4
Divide \frac{1}{8} by \frac{1}{32} by multiplying \frac{1}{8} by the reciprocal of \frac{1}{32}.
x=36 x=4
The equation is now solved.
\frac{1}{8}\times 36+\frac{3}{2}=\sqrt{36}
Substitute 36 for x in the equation \frac{1}{8}x+\frac{3}{2}=\sqrt{x}.
6=6
Simplify. The value x=36 satisfies the equation.
\frac{1}{8}\times 4+\frac{3}{2}=\sqrt{4}
Substitute 4 for x in the equation \frac{1}{8}x+\frac{3}{2}=\sqrt{x}.
2=2
Simplify. The value x=4 satisfies the equation.
x=36 x=4
List all solutions of \frac{x}{8}+\frac{3}{2}=\sqrt{x}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}