Solve for y
y=\frac{6}{35}\approx 0.171428571
Graph
Share
Copied to clipboard
30-36=10y\times 4+180y\left(-\frac{5}{12}\right)
Variable y cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 180y, the least common multiple of 6y,5y,18,12.
-6=10y\times 4+180y\left(-\frac{5}{12}\right)
Subtract 36 from 30 to get -6.
-6=40y+180y\left(-\frac{5}{12}\right)
Multiply 10 and 4 to get 40.
-6=40y-75y
Multiply 180 and -\frac{5}{12} to get -75.
-6=-35y
Combine 40y and -75y to get -35y.
-35y=-6
Swap sides so that all variable terms are on the left hand side.
y=\frac{-6}{-35}
Divide both sides by -35.
y=\frac{6}{35}
Fraction \frac{-6}{-35} can be simplified to \frac{6}{35} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}