Evaluate
\frac{211\sqrt{35}}{210}+6\approx 11.944251592
Factor
\frac{211 \sqrt{35} + 1260}{210} = 11.944251591590568
Share
Copied to clipboard
\frac{\sqrt{35}}{6\left(\sqrt{35}\right)^{2}}+\frac{1}{6-\sqrt{35}}
Rationalize the denominator of \frac{1}{6\sqrt{35}} by multiplying numerator and denominator by \sqrt{35}.
\frac{\sqrt{35}}{6\times 35}+\frac{1}{6-\sqrt{35}}
The square of \sqrt{35} is 35.
\frac{\sqrt{35}}{210}+\frac{1}{6-\sqrt{35}}
Multiply 6 and 35 to get 210.
\frac{\sqrt{35}}{210}+\frac{6+\sqrt{35}}{\left(6-\sqrt{35}\right)\left(6+\sqrt{35}\right)}
Rationalize the denominator of \frac{1}{6-\sqrt{35}} by multiplying numerator and denominator by 6+\sqrt{35}.
\frac{\sqrt{35}}{210}+\frac{6+\sqrt{35}}{6^{2}-\left(\sqrt{35}\right)^{2}}
Consider \left(6-\sqrt{35}\right)\left(6+\sqrt{35}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\sqrt{35}}{210}+\frac{6+\sqrt{35}}{36-35}
Square 6. Square \sqrt{35}.
\frac{\sqrt{35}}{210}+\frac{6+\sqrt{35}}{1}
Subtract 35 from 36 to get 1.
\frac{\sqrt{35}}{210}+6+\sqrt{35}
Anything divided by one gives itself.
\frac{211}{210}\sqrt{35}+6
Combine \frac{\sqrt{35}}{210} and \sqrt{35} to get \frac{211}{210}\sqrt{35}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}