Solve for x
x = \frac{85}{13} = 6\frac{7}{13} \approx 6.538461538
Graph
Share
Copied to clipboard
\frac{1}{6}x+\frac{1}{6}\left(-7\right)=\frac{1}{7}\left(6-x\right)
Use the distributive property to multiply \frac{1}{6} by x-7.
\frac{1}{6}x+\frac{-7}{6}=\frac{1}{7}\left(6-x\right)
Multiply \frac{1}{6} and -7 to get \frac{-7}{6}.
\frac{1}{6}x-\frac{7}{6}=\frac{1}{7}\left(6-x\right)
Fraction \frac{-7}{6} can be rewritten as -\frac{7}{6} by extracting the negative sign.
\frac{1}{6}x-\frac{7}{6}=\frac{1}{7}\times 6+\frac{1}{7}\left(-1\right)x
Use the distributive property to multiply \frac{1}{7} by 6-x.
\frac{1}{6}x-\frac{7}{6}=\frac{6}{7}+\frac{1}{7}\left(-1\right)x
Multiply \frac{1}{7} and 6 to get \frac{6}{7}.
\frac{1}{6}x-\frac{7}{6}=\frac{6}{7}-\frac{1}{7}x
Multiply \frac{1}{7} and -1 to get -\frac{1}{7}.
\frac{1}{6}x-\frac{7}{6}+\frac{1}{7}x=\frac{6}{7}
Add \frac{1}{7}x to both sides.
\frac{13}{42}x-\frac{7}{6}=\frac{6}{7}
Combine \frac{1}{6}x and \frac{1}{7}x to get \frac{13}{42}x.
\frac{13}{42}x=\frac{6}{7}+\frac{7}{6}
Add \frac{7}{6} to both sides.
\frac{13}{42}x=\frac{36}{42}+\frac{49}{42}
Least common multiple of 7 and 6 is 42. Convert \frac{6}{7} and \frac{7}{6} to fractions with denominator 42.
\frac{13}{42}x=\frac{36+49}{42}
Since \frac{36}{42} and \frac{49}{42} have the same denominator, add them by adding their numerators.
\frac{13}{42}x=\frac{85}{42}
Add 36 and 49 to get 85.
x=\frac{85}{42}\times \frac{42}{13}
Multiply both sides by \frac{42}{13}, the reciprocal of \frac{13}{42}.
x=\frac{85\times 42}{42\times 13}
Multiply \frac{85}{42} times \frac{42}{13} by multiplying numerator times numerator and denominator times denominator.
x=\frac{85}{13}
Cancel out 42 in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}