Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{1}{6}\left(4x+5\right)\left(-\frac{2}{3}\right)\left(2x+7\right)=3
Fraction \frac{-2}{3} can be rewritten as -\frac{2}{3} by extracting the negative sign.
-\frac{1}{9}\left(4x+5\right)\left(2x+7\right)=3
Multiply \frac{1}{6} and -\frac{2}{3} to get -\frac{1}{9}.
\left(-\frac{4}{9}x-\frac{5}{9}\right)\left(2x+7\right)=3
Use the distributive property to multiply -\frac{1}{9} by 4x+5.
-\frac{8}{9}x^{2}-\frac{38}{9}x-\frac{35}{9}=3
Use the distributive property to multiply -\frac{4}{9}x-\frac{5}{9} by 2x+7 and combine like terms.
-\frac{8}{9}x^{2}-\frac{38}{9}x-\frac{35}{9}-3=0
Subtract 3 from both sides.
-\frac{8}{9}x^{2}-\frac{38}{9}x-\frac{62}{9}=0
Subtract 3 from -\frac{35}{9} to get -\frac{62}{9}.
x=\frac{-\left(-\frac{38}{9}\right)±\sqrt{\left(-\frac{38}{9}\right)^{2}-4\left(-\frac{8}{9}\right)\left(-\frac{62}{9}\right)}}{2\left(-\frac{8}{9}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{8}{9} for a, -\frac{38}{9} for b, and -\frac{62}{9} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{38}{9}\right)±\sqrt{\frac{1444}{81}-4\left(-\frac{8}{9}\right)\left(-\frac{62}{9}\right)}}{2\left(-\frac{8}{9}\right)}
Square -\frac{38}{9} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-\frac{38}{9}\right)±\sqrt{\frac{1444}{81}+\frac{32}{9}\left(-\frac{62}{9}\right)}}{2\left(-\frac{8}{9}\right)}
Multiply -4 times -\frac{8}{9}.
x=\frac{-\left(-\frac{38}{9}\right)±\sqrt{\frac{1444-1984}{81}}}{2\left(-\frac{8}{9}\right)}
Multiply \frac{32}{9} times -\frac{62}{9} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-\frac{38}{9}\right)±\sqrt{-\frac{20}{3}}}{2\left(-\frac{8}{9}\right)}
Add \frac{1444}{81} to -\frac{1984}{81} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-\frac{38}{9}\right)±\frac{2\sqrt{15}i}{3}}{2\left(-\frac{8}{9}\right)}
Take the square root of -\frac{20}{3}.
x=\frac{\frac{38}{9}±\frac{2\sqrt{15}i}{3}}{2\left(-\frac{8}{9}\right)}
The opposite of -\frac{38}{9} is \frac{38}{9}.
x=\frac{\frac{38}{9}±\frac{2\sqrt{15}i}{3}}{-\frac{16}{9}}
Multiply 2 times -\frac{8}{9}.
x=\frac{\frac{2\sqrt{15}i}{3}+\frac{38}{9}}{-\frac{16}{9}}
Now solve the equation x=\frac{\frac{38}{9}±\frac{2\sqrt{15}i}{3}}{-\frac{16}{9}} when ± is plus. Add \frac{38}{9} to \frac{2i\sqrt{15}}{3}.
x=\frac{-3\sqrt{15}i-19}{8}
Divide \frac{38}{9}+\frac{2i\sqrt{15}}{3} by -\frac{16}{9} by multiplying \frac{38}{9}+\frac{2i\sqrt{15}}{3} by the reciprocal of -\frac{16}{9}.
x=\frac{-\frac{2\sqrt{15}i}{3}+\frac{38}{9}}{-\frac{16}{9}}
Now solve the equation x=\frac{\frac{38}{9}±\frac{2\sqrt{15}i}{3}}{-\frac{16}{9}} when ± is minus. Subtract \frac{2i\sqrt{15}}{3} from \frac{38}{9}.
x=\frac{-19+3\sqrt{15}i}{8}
Divide \frac{38}{9}-\frac{2i\sqrt{15}}{3} by -\frac{16}{9} by multiplying \frac{38}{9}-\frac{2i\sqrt{15}}{3} by the reciprocal of -\frac{16}{9}.
x=\frac{-3\sqrt{15}i-19}{8} x=\frac{-19+3\sqrt{15}i}{8}
The equation is now solved.
\frac{1}{6}\left(4x+5\right)\left(-\frac{2}{3}\right)\left(2x+7\right)=3
Fraction \frac{-2}{3} can be rewritten as -\frac{2}{3} by extracting the negative sign.
-\frac{1}{9}\left(4x+5\right)\left(2x+7\right)=3
Multiply \frac{1}{6} and -\frac{2}{3} to get -\frac{1}{9}.
\left(-\frac{4}{9}x-\frac{5}{9}\right)\left(2x+7\right)=3
Use the distributive property to multiply -\frac{1}{9} by 4x+5.
-\frac{8}{9}x^{2}-\frac{38}{9}x-\frac{35}{9}=3
Use the distributive property to multiply -\frac{4}{9}x-\frac{5}{9} by 2x+7 and combine like terms.
-\frac{8}{9}x^{2}-\frac{38}{9}x=3+\frac{35}{9}
Add \frac{35}{9} to both sides.
-\frac{8}{9}x^{2}-\frac{38}{9}x=\frac{62}{9}
Add 3 and \frac{35}{9} to get \frac{62}{9}.
\frac{-\frac{8}{9}x^{2}-\frac{38}{9}x}{-\frac{8}{9}}=\frac{\frac{62}{9}}{-\frac{8}{9}}
Divide both sides of the equation by -\frac{8}{9}, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\left(-\frac{\frac{38}{9}}{-\frac{8}{9}}\right)x=\frac{\frac{62}{9}}{-\frac{8}{9}}
Dividing by -\frac{8}{9} undoes the multiplication by -\frac{8}{9}.
x^{2}+\frac{19}{4}x=\frac{\frac{62}{9}}{-\frac{8}{9}}
Divide -\frac{38}{9} by -\frac{8}{9} by multiplying -\frac{38}{9} by the reciprocal of -\frac{8}{9}.
x^{2}+\frac{19}{4}x=-\frac{31}{4}
Divide \frac{62}{9} by -\frac{8}{9} by multiplying \frac{62}{9} by the reciprocal of -\frac{8}{9}.
x^{2}+\frac{19}{4}x+\left(\frac{19}{8}\right)^{2}=-\frac{31}{4}+\left(\frac{19}{8}\right)^{2}
Divide \frac{19}{4}, the coefficient of the x term, by 2 to get \frac{19}{8}. Then add the square of \frac{19}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{19}{4}x+\frac{361}{64}=-\frac{31}{4}+\frac{361}{64}
Square \frac{19}{8} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{19}{4}x+\frac{361}{64}=-\frac{135}{64}
Add -\frac{31}{4} to \frac{361}{64} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{19}{8}\right)^{2}=-\frac{135}{64}
Factor x^{2}+\frac{19}{4}x+\frac{361}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{19}{8}\right)^{2}}=\sqrt{-\frac{135}{64}}
Take the square root of both sides of the equation.
x+\frac{19}{8}=\frac{3\sqrt{15}i}{8} x+\frac{19}{8}=-\frac{3\sqrt{15}i}{8}
Simplify.
x=\frac{-19+3\sqrt{15}i}{8} x=\frac{-3\sqrt{15}i-19}{8}
Subtract \frac{19}{8} from both sides of the equation.