Solve for x
x=-3
x=8
Graph
Share
Copied to clipboard
\frac{1}{6}x^{2}-\frac{5}{6}x-4=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-\frac{5}{6}\right)±\sqrt{\left(-\frac{5}{6}\right)^{2}-4\times \frac{1}{6}\left(-4\right)}}{2\times \frac{1}{6}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{1}{6} for a, -\frac{5}{6} for b, and -4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{5}{6}\right)±\sqrt{\frac{25}{36}-4\times \frac{1}{6}\left(-4\right)}}{2\times \frac{1}{6}}
Square -\frac{5}{6} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-\frac{5}{6}\right)±\sqrt{\frac{25}{36}-\frac{2}{3}\left(-4\right)}}{2\times \frac{1}{6}}
Multiply -4 times \frac{1}{6}.
x=\frac{-\left(-\frac{5}{6}\right)±\sqrt{\frac{25}{36}+\frac{8}{3}}}{2\times \frac{1}{6}}
Multiply -\frac{2}{3} times -4.
x=\frac{-\left(-\frac{5}{6}\right)±\sqrt{\frac{121}{36}}}{2\times \frac{1}{6}}
Add \frac{25}{36} to \frac{8}{3} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-\frac{5}{6}\right)±\frac{11}{6}}{2\times \frac{1}{6}}
Take the square root of \frac{121}{36}.
x=\frac{\frac{5}{6}±\frac{11}{6}}{2\times \frac{1}{6}}
The opposite of -\frac{5}{6} is \frac{5}{6}.
x=\frac{\frac{5}{6}±\frac{11}{6}}{\frac{1}{3}}
Multiply 2 times \frac{1}{6}.
x=\frac{\frac{8}{3}}{\frac{1}{3}}
Now solve the equation x=\frac{\frac{5}{6}±\frac{11}{6}}{\frac{1}{3}} when ± is plus. Add \frac{5}{6} to \frac{11}{6} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=8
Divide \frac{8}{3} by \frac{1}{3} by multiplying \frac{8}{3} by the reciprocal of \frac{1}{3}.
x=-\frac{1}{\frac{1}{3}}
Now solve the equation x=\frac{\frac{5}{6}±\frac{11}{6}}{\frac{1}{3}} when ± is minus. Subtract \frac{11}{6} from \frac{5}{6} by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
x=-3
Divide -1 by \frac{1}{3} by multiplying -1 by the reciprocal of \frac{1}{3}.
x=8 x=-3
The equation is now solved.
\frac{1}{6}x^{2}-\frac{5}{6}x-4=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{1}{6}x^{2}-\frac{5}{6}x-4-\left(-4\right)=-\left(-4\right)
Add 4 to both sides of the equation.
\frac{1}{6}x^{2}-\frac{5}{6}x=-\left(-4\right)
Subtracting -4 from itself leaves 0.
\frac{1}{6}x^{2}-\frac{5}{6}x=4
Subtract -4 from 0.
\frac{\frac{1}{6}x^{2}-\frac{5}{6}x}{\frac{1}{6}}=\frac{4}{\frac{1}{6}}
Multiply both sides by 6.
x^{2}+\left(-\frac{\frac{5}{6}}{\frac{1}{6}}\right)x=\frac{4}{\frac{1}{6}}
Dividing by \frac{1}{6} undoes the multiplication by \frac{1}{6}.
x^{2}-5x=\frac{4}{\frac{1}{6}}
Divide -\frac{5}{6} by \frac{1}{6} by multiplying -\frac{5}{6} by the reciprocal of \frac{1}{6}.
x^{2}-5x=24
Divide 4 by \frac{1}{6} by multiplying 4 by the reciprocal of \frac{1}{6}.
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=24+\left(-\frac{5}{2}\right)^{2}
Divide -5, the coefficient of the x term, by 2 to get -\frac{5}{2}. Then add the square of -\frac{5}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-5x+\frac{25}{4}=24+\frac{25}{4}
Square -\frac{5}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-5x+\frac{25}{4}=\frac{121}{4}
Add 24 to \frac{25}{4}.
\left(x-\frac{5}{2}\right)^{2}=\frac{121}{4}
Factor x^{2}-5x+\frac{25}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{\frac{121}{4}}
Take the square root of both sides of the equation.
x-\frac{5}{2}=\frac{11}{2} x-\frac{5}{2}=-\frac{11}{2}
Simplify.
x=8 x=-3
Add \frac{5}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}