Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{1}{5\left(a+1\right)}+\frac{1}{5\left(-a+1\right)}-\frac{1}{10+10a^{2}}
Factor 5+5a. Factor 5-5a.
\frac{-a+1}{5\left(a+1\right)\left(-a+1\right)}+\frac{a+1}{5\left(a+1\right)\left(-a+1\right)}-\frac{1}{10+10a^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 5\left(a+1\right) and 5\left(-a+1\right) is 5\left(a+1\right)\left(-a+1\right). Multiply \frac{1}{5\left(a+1\right)} times \frac{-a+1}{-a+1}. Multiply \frac{1}{5\left(-a+1\right)} times \frac{a+1}{a+1}.
\frac{-a+1+a+1}{5\left(a+1\right)\left(-a+1\right)}-\frac{1}{10+10a^{2}}
Since \frac{-a+1}{5\left(a+1\right)\left(-a+1\right)} and \frac{a+1}{5\left(a+1\right)\left(-a+1\right)} have the same denominator, add them by adding their numerators.
\frac{2}{5\left(a+1\right)\left(-a+1\right)}-\frac{1}{10+10a^{2}}
Combine like terms in -a+1+a+1.
\frac{2}{5\left(a+1\right)\left(-a+1\right)}-\frac{1}{10\left(a^{2}+1\right)}
Factor 10+10a^{2}.
\frac{2\left(-2\right)\left(a^{2}+1\right)}{10\left(a-1\right)\left(a+1\right)\left(a^{2}+1\right)}-\frac{\left(a-1\right)\left(a+1\right)}{10\left(a-1\right)\left(a+1\right)\left(a^{2}+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 5\left(a+1\right)\left(-a+1\right) and 10\left(a^{2}+1\right) is 10\left(a-1\right)\left(a+1\right)\left(a^{2}+1\right). Multiply \frac{2}{5\left(a+1\right)\left(-a+1\right)} times \frac{-2\left(a^{2}+1\right)}{-2\left(a^{2}+1\right)}. Multiply \frac{1}{10\left(a^{2}+1\right)} times \frac{\left(a-1\right)\left(a+1\right)}{\left(a-1\right)\left(a+1\right)}.
\frac{2\left(-2\right)\left(a^{2}+1\right)-\left(a-1\right)\left(a+1\right)}{10\left(a-1\right)\left(a+1\right)\left(a^{2}+1\right)}
Since \frac{2\left(-2\right)\left(a^{2}+1\right)}{10\left(a-1\right)\left(a+1\right)\left(a^{2}+1\right)} and \frac{\left(a-1\right)\left(a+1\right)}{10\left(a-1\right)\left(a+1\right)\left(a^{2}+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-4a^{2}-4-a^{2}-a+a+1}{10\left(a-1\right)\left(a+1\right)\left(a^{2}+1\right)}
Do the multiplications in 2\left(-2\right)\left(a^{2}+1\right)-\left(a-1\right)\left(a+1\right).
\frac{-5a^{2}-3}{10\left(a-1\right)\left(a+1\right)\left(a^{2}+1\right)}
Combine like terms in -4a^{2}-4-a^{2}-a+a+1.
\frac{-5a^{2}-3}{10a^{4}-10}
Expand 10\left(a-1\right)\left(a+1\right)\left(a^{2}+1\right).