Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{1\left(5-10i\right)}{\left(5+10i\right)\left(5-10i\right)}+\frac{1}{3-4i}
Multiply both numerator and denominator of \frac{1}{5+10i} by the complex conjugate of the denominator, 5-10i.
\frac{5-10i}{125}+\frac{1}{3-4i}
Do the multiplications in \frac{1\left(5-10i\right)}{\left(5+10i\right)\left(5-10i\right)}.
\frac{1}{25}-\frac{2}{25}i+\frac{1}{3-4i}
Divide 5-10i by 125 to get \frac{1}{25}-\frac{2}{25}i.
\frac{1}{25}-\frac{2}{25}i+\frac{1\left(3+4i\right)}{\left(3-4i\right)\left(3+4i\right)}
Multiply both numerator and denominator of \frac{1}{3-4i} by the complex conjugate of the denominator, 3+4i.
\frac{1}{25}-\frac{2}{25}i+\frac{3+4i}{25}
Do the multiplications in \frac{1\left(3+4i\right)}{\left(3-4i\right)\left(3+4i\right)}.
\frac{1}{25}-\frac{2}{25}i+\left(\frac{3}{25}+\frac{4}{25}i\right)
Divide 3+4i by 25 to get \frac{3}{25}+\frac{4}{25}i.
\frac{4}{25}+\frac{2}{25}i
Add \frac{1}{25}-\frac{2}{25}i and \frac{3}{25}+\frac{4}{25}i to get \frac{4}{25}+\frac{2}{25}i.
Re(\frac{1\left(5-10i\right)}{\left(5+10i\right)\left(5-10i\right)}+\frac{1}{3-4i})
Multiply both numerator and denominator of \frac{1}{5+10i} by the complex conjugate of the denominator, 5-10i.
Re(\frac{5-10i}{125}+\frac{1}{3-4i})
Do the multiplications in \frac{1\left(5-10i\right)}{\left(5+10i\right)\left(5-10i\right)}.
Re(\frac{1}{25}-\frac{2}{25}i+\frac{1}{3-4i})
Divide 5-10i by 125 to get \frac{1}{25}-\frac{2}{25}i.
Re(\frac{1}{25}-\frac{2}{25}i+\frac{1\left(3+4i\right)}{\left(3-4i\right)\left(3+4i\right)})
Multiply both numerator and denominator of \frac{1}{3-4i} by the complex conjugate of the denominator, 3+4i.
Re(\frac{1}{25}-\frac{2}{25}i+\frac{3+4i}{25})
Do the multiplications in \frac{1\left(3+4i\right)}{\left(3-4i\right)\left(3+4i\right)}.
Re(\frac{1}{25}-\frac{2}{25}i+\left(\frac{3}{25}+\frac{4}{25}i\right))
Divide 3+4i by 25 to get \frac{3}{25}+\frac{4}{25}i.
Re(\frac{4}{25}+\frac{2}{25}i)
Add \frac{1}{25}-\frac{2}{25}i and \frac{3}{25}+\frac{4}{25}i to get \frac{4}{25}+\frac{2}{25}i.
\frac{4}{25}
The real part of \frac{4}{25}+\frac{2}{25}i is \frac{4}{25}.