Solve for x
x=\frac{1}{24}\approx 0.041666667
Graph
Share
Copied to clipboard
\frac{1}{5}x-\frac{1}{2}+7x=-\frac{1}{5}
Add 7x to both sides.
\frac{36}{5}x-\frac{1}{2}=-\frac{1}{5}
Combine \frac{1}{5}x and 7x to get \frac{36}{5}x.
\frac{36}{5}x=-\frac{1}{5}+\frac{1}{2}
Add \frac{1}{2} to both sides.
\frac{36}{5}x=-\frac{2}{10}+\frac{5}{10}
Least common multiple of 5 and 2 is 10. Convert -\frac{1}{5} and \frac{1}{2} to fractions with denominator 10.
\frac{36}{5}x=\frac{-2+5}{10}
Since -\frac{2}{10} and \frac{5}{10} have the same denominator, add them by adding their numerators.
\frac{36}{5}x=\frac{3}{10}
Add -2 and 5 to get 3.
x=\frac{3}{10}\times \frac{5}{36}
Multiply both sides by \frac{5}{36}, the reciprocal of \frac{36}{5}.
x=\frac{3\times 5}{10\times 36}
Multiply \frac{3}{10} times \frac{5}{36} by multiplying numerator times numerator and denominator times denominator.
x=\frac{15}{360}
Do the multiplications in the fraction \frac{3\times 5}{10\times 36}.
x=\frac{1}{24}
Reduce the fraction \frac{15}{360} to lowest terms by extracting and canceling out 15.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}