Solve for x
x = \frac{25}{12} = 2\frac{1}{12} \approx 2.083333333
Graph
Quiz
Linear Equation
5 problems similar to:
\frac{ 1 }{ 5 } x- \frac{ 1 }{ 2 } \left( 3-2x \right) = 1
Share
Copied to clipboard
\frac{1}{5}x-\frac{1}{2}\times 3-\frac{1}{2}\left(-2\right)x=1
Use the distributive property to multiply -\frac{1}{2} by 3-2x.
\frac{1}{5}x+\frac{-3}{2}-\frac{1}{2}\left(-2\right)x=1
Express -\frac{1}{2}\times 3 as a single fraction.
\frac{1}{5}x-\frac{3}{2}-\frac{1}{2}\left(-2\right)x=1
Fraction \frac{-3}{2} can be rewritten as -\frac{3}{2} by extracting the negative sign.
\frac{1}{5}x-\frac{3}{2}+\frac{-\left(-2\right)}{2}x=1
Express -\frac{1}{2}\left(-2\right) as a single fraction.
\frac{1}{5}x-\frac{3}{2}+\frac{2}{2}x=1
Multiply -1 and -2 to get 2.
\frac{1}{5}x-\frac{3}{2}+1x=1
Divide 2 by 2 to get 1.
\frac{6}{5}x-\frac{3}{2}=1
Combine \frac{1}{5}x and 1x to get \frac{6}{5}x.
\frac{6}{5}x=1+\frac{3}{2}
Add \frac{3}{2} to both sides.
\frac{6}{5}x=\frac{2}{2}+\frac{3}{2}
Convert 1 to fraction \frac{2}{2}.
\frac{6}{5}x=\frac{2+3}{2}
Since \frac{2}{2} and \frac{3}{2} have the same denominator, add them by adding their numerators.
\frac{6}{5}x=\frac{5}{2}
Add 2 and 3 to get 5.
x=\frac{5}{2}\times \frac{5}{6}
Multiply both sides by \frac{5}{6}, the reciprocal of \frac{6}{5}.
x=\frac{5\times 5}{2\times 6}
Multiply \frac{5}{2} times \frac{5}{6} by multiplying numerator times numerator and denominator times denominator.
x=\frac{25}{12}
Do the multiplications in the fraction \frac{5\times 5}{2\times 6}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}