Solve for x
x = \frac{155}{47} = 3\frac{14}{47} \approx 3.29787234
Graph
Quiz
Linear Equation
5 problems similar to:
\frac{ 1 }{ 5 } x+ \frac{ 1 }{ 3 } =5( \frac{ 2 }{ 3 } x-2)
Share
Copied to clipboard
\frac{1}{5}x+\frac{1}{3}=5\times \frac{2}{3}x-10
Use the distributive property to multiply 5 by \frac{2}{3}x-2.
\frac{1}{5}x+\frac{1}{3}=\frac{5\times 2}{3}x-10
Express 5\times \frac{2}{3} as a single fraction.
\frac{1}{5}x+\frac{1}{3}=\frac{10}{3}x-10
Multiply 5 and 2 to get 10.
\frac{1}{5}x+\frac{1}{3}-\frac{10}{3}x=-10
Subtract \frac{10}{3}x from both sides.
-\frac{47}{15}x+\frac{1}{3}=-10
Combine \frac{1}{5}x and -\frac{10}{3}x to get -\frac{47}{15}x.
-\frac{47}{15}x=-10-\frac{1}{3}
Subtract \frac{1}{3} from both sides.
-\frac{47}{15}x=-\frac{30}{3}-\frac{1}{3}
Convert -10 to fraction -\frac{30}{3}.
-\frac{47}{15}x=\frac{-30-1}{3}
Since -\frac{30}{3} and \frac{1}{3} have the same denominator, subtract them by subtracting their numerators.
-\frac{47}{15}x=-\frac{31}{3}
Subtract 1 from -30 to get -31.
x=-\frac{31}{3}\left(-\frac{15}{47}\right)
Multiply both sides by -\frac{15}{47}, the reciprocal of -\frac{47}{15}.
x=\frac{-31\left(-15\right)}{3\times 47}
Multiply -\frac{31}{3} times -\frac{15}{47} by multiplying numerator times numerator and denominator times denominator.
x=\frac{465}{141}
Do the multiplications in the fraction \frac{-31\left(-15\right)}{3\times 47}.
x=\frac{155}{47}
Reduce the fraction \frac{465}{141} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}