Evaluate
-\frac{4}{9}\approx -0.444444444
Factor
-\frac{4}{9} = -0.4444444444444444
Share
Copied to clipboard
\frac{1}{5}+\frac{1}{9}-\frac{5}{9}-0.2
The opposite of -\frac{1}{9} is \frac{1}{9}.
\frac{9}{45}+\frac{5}{45}-\frac{5}{9}-0.2
Least common multiple of 5 and 9 is 45. Convert \frac{1}{5} and \frac{1}{9} to fractions with denominator 45.
\frac{9+5}{45}-\frac{5}{9}-0.2
Since \frac{9}{45} and \frac{5}{45} have the same denominator, add them by adding their numerators.
\frac{14}{45}-\frac{5}{9}-0.2
Add 9 and 5 to get 14.
\frac{14}{45}-\frac{25}{45}-0.2
Least common multiple of 45 and 9 is 45. Convert \frac{14}{45} and \frac{5}{9} to fractions with denominator 45.
\frac{14-25}{45}-0.2
Since \frac{14}{45} and \frac{25}{45} have the same denominator, subtract them by subtracting their numerators.
-\frac{11}{45}-0.2
Subtract 25 from 14 to get -11.
-\frac{11}{45}-\frac{1}{5}
Convert decimal number 0.2 to fraction \frac{2}{10}. Reduce the fraction \frac{2}{10} to lowest terms by extracting and canceling out 2.
-\frac{11}{45}-\frac{9}{45}
Least common multiple of 45 and 5 is 45. Convert -\frac{11}{45} and \frac{1}{5} to fractions with denominator 45.
\frac{-11-9}{45}
Since -\frac{11}{45} and \frac{9}{45} have the same denominator, subtract them by subtracting their numerators.
\frac{-20}{45}
Subtract 9 from -11 to get -20.
-\frac{4}{9}
Reduce the fraction \frac{-20}{45} to lowest terms by extracting and canceling out 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}