Evaluate
\frac{9x+17y+27}{10}
Expand
\frac{9x+17y+27}{10}
Share
Copied to clipboard
\frac{1}{5}\times 2x+\frac{1}{5}y+\frac{1}{5}+\frac{1}{2}\left(x+3y+5\right)
Use the distributive property to multiply \frac{1}{5} by 2x+y+1.
\frac{2}{5}x+\frac{1}{5}y+\frac{1}{5}+\frac{1}{2}\left(x+3y+5\right)
Multiply \frac{1}{5} and 2 to get \frac{2}{5}.
\frac{2}{5}x+\frac{1}{5}y+\frac{1}{5}+\frac{1}{2}x+\frac{1}{2}\times 3y+\frac{1}{2}\times 5
Use the distributive property to multiply \frac{1}{2} by x+3y+5.
\frac{2}{5}x+\frac{1}{5}y+\frac{1}{5}+\frac{1}{2}x+\frac{3}{2}y+\frac{1}{2}\times 5
Multiply \frac{1}{2} and 3 to get \frac{3}{2}.
\frac{2}{5}x+\frac{1}{5}y+\frac{1}{5}+\frac{1}{2}x+\frac{3}{2}y+\frac{5}{2}
Multiply \frac{1}{2} and 5 to get \frac{5}{2}.
\frac{9}{10}x+\frac{1}{5}y+\frac{1}{5}+\frac{3}{2}y+\frac{5}{2}
Combine \frac{2}{5}x and \frac{1}{2}x to get \frac{9}{10}x.
\frac{9}{10}x+\frac{17}{10}y+\frac{1}{5}+\frac{5}{2}
Combine \frac{1}{5}y and \frac{3}{2}y to get \frac{17}{10}y.
\frac{9}{10}x+\frac{17}{10}y+\frac{2}{10}+\frac{25}{10}
Least common multiple of 5 and 2 is 10. Convert \frac{1}{5} and \frac{5}{2} to fractions with denominator 10.
\frac{9}{10}x+\frac{17}{10}y+\frac{2+25}{10}
Since \frac{2}{10} and \frac{25}{10} have the same denominator, add them by adding their numerators.
\frac{9}{10}x+\frac{17}{10}y+\frac{27}{10}
Add 2 and 25 to get 27.
\frac{1}{5}\times 2x+\frac{1}{5}y+\frac{1}{5}+\frac{1}{2}\left(x+3y+5\right)
Use the distributive property to multiply \frac{1}{5} by 2x+y+1.
\frac{2}{5}x+\frac{1}{5}y+\frac{1}{5}+\frac{1}{2}\left(x+3y+5\right)
Multiply \frac{1}{5} and 2 to get \frac{2}{5}.
\frac{2}{5}x+\frac{1}{5}y+\frac{1}{5}+\frac{1}{2}x+\frac{1}{2}\times 3y+\frac{1}{2}\times 5
Use the distributive property to multiply \frac{1}{2} by x+3y+5.
\frac{2}{5}x+\frac{1}{5}y+\frac{1}{5}+\frac{1}{2}x+\frac{3}{2}y+\frac{1}{2}\times 5
Multiply \frac{1}{2} and 3 to get \frac{3}{2}.
\frac{2}{5}x+\frac{1}{5}y+\frac{1}{5}+\frac{1}{2}x+\frac{3}{2}y+\frac{5}{2}
Multiply \frac{1}{2} and 5 to get \frac{5}{2}.
\frac{9}{10}x+\frac{1}{5}y+\frac{1}{5}+\frac{3}{2}y+\frac{5}{2}
Combine \frac{2}{5}x and \frac{1}{2}x to get \frac{9}{10}x.
\frac{9}{10}x+\frac{17}{10}y+\frac{1}{5}+\frac{5}{2}
Combine \frac{1}{5}y and \frac{3}{2}y to get \frac{17}{10}y.
\frac{9}{10}x+\frac{17}{10}y+\frac{2}{10}+\frac{25}{10}
Least common multiple of 5 and 2 is 10. Convert \frac{1}{5} and \frac{5}{2} to fractions with denominator 10.
\frac{9}{10}x+\frac{17}{10}y+\frac{2+25}{10}
Since \frac{2}{10} and \frac{25}{10} have the same denominator, add them by adding their numerators.
\frac{9}{10}x+\frac{17}{10}y+\frac{27}{10}
Add 2 and 25 to get 27.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}