Evaluate
\frac{14}{15}\approx 0.933333333
Factor
\frac{2 \cdot 7}{3 \cdot 5} = 0.9333333333333333
Share
Copied to clipboard
\frac{3}{15}-\frac{10}{15}-\left(\frac{-\left(-\frac{1}{2}\right)}{-\frac{1}{4}}-\frac{1}{5}\times \frac{-2}{\frac{1}{3}}-\frac{3}{5}\right)
Least common multiple of 5 and 3 is 15. Convert \frac{1}{5} and \frac{2}{3} to fractions with denominator 15.
\frac{3-10}{15}-\left(\frac{-\left(-\frac{1}{2}\right)}{-\frac{1}{4}}-\frac{1}{5}\times \frac{-2}{\frac{1}{3}}-\frac{3}{5}\right)
Since \frac{3}{15} and \frac{10}{15} have the same denominator, subtract them by subtracting their numerators.
-\frac{7}{15}-\left(\frac{-\left(-\frac{1}{2}\right)}{-\frac{1}{4}}-\frac{1}{5}\times \frac{-2}{\frac{1}{3}}-\frac{3}{5}\right)
Subtract 10 from 3 to get -7.
-\frac{7}{15}-\left(\frac{\frac{1}{2}}{-\frac{1}{4}}-\frac{1}{5}\times \frac{-2}{\frac{1}{3}}-\frac{3}{5}\right)
The opposite of -\frac{1}{2} is \frac{1}{2}.
-\frac{7}{15}-\left(\frac{1}{2}\left(-4\right)-\frac{1}{5}\times \frac{-2}{\frac{1}{3}}-\frac{3}{5}\right)
Divide \frac{1}{2} by -\frac{1}{4} by multiplying \frac{1}{2} by the reciprocal of -\frac{1}{4}.
-\frac{7}{15}-\left(\frac{-4}{2}-\frac{1}{5}\times \frac{-2}{\frac{1}{3}}-\frac{3}{5}\right)
Multiply \frac{1}{2} and -4 to get \frac{-4}{2}.
-\frac{7}{15}-\left(-2-\frac{1}{5}\times \frac{-2}{\frac{1}{3}}-\frac{3}{5}\right)
Divide -4 by 2 to get -2.
-\frac{7}{15}-\left(-2-\frac{1}{5}\left(-2\right)\times 3-\frac{3}{5}\right)
Divide -2 by \frac{1}{3} by multiplying -2 by the reciprocal of \frac{1}{3}.
-\frac{7}{15}-\left(-2-\frac{1}{5}\left(-6\right)-\frac{3}{5}\right)
Multiply -2 and 3 to get -6.
-\frac{7}{15}-\left(-2+\frac{-\left(-6\right)}{5}-\frac{3}{5}\right)
Express -\frac{1}{5}\left(-6\right) as a single fraction.
-\frac{7}{15}-\left(-2+\frac{6}{5}-\frac{3}{5}\right)
Multiply -1 and -6 to get 6.
-\frac{7}{15}-\left(-\frac{10}{5}+\frac{6}{5}-\frac{3}{5}\right)
Convert -2 to fraction -\frac{10}{5}.
-\frac{7}{15}-\left(\frac{-10+6}{5}-\frac{3}{5}\right)
Since -\frac{10}{5} and \frac{6}{5} have the same denominator, add them by adding their numerators.
-\frac{7}{15}-\left(-\frac{4}{5}-\frac{3}{5}\right)
Add -10 and 6 to get -4.
-\frac{7}{15}-\frac{-4-3}{5}
Since -\frac{4}{5} and \frac{3}{5} have the same denominator, subtract them by subtracting their numerators.
-\frac{7}{15}-\left(-\frac{7}{5}\right)
Subtract 3 from -4 to get -7.
-\frac{7}{15}+\frac{7}{5}
The opposite of -\frac{7}{5} is \frac{7}{5}.
-\frac{7}{15}+\frac{21}{15}
Least common multiple of 15 and 5 is 15. Convert -\frac{7}{15} and \frac{7}{5} to fractions with denominator 15.
\frac{-7+21}{15}
Since -\frac{7}{15} and \frac{21}{15} have the same denominator, add them by adding their numerators.
\frac{14}{15}
Add -7 and 21 to get 14.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}