Evaluate
\frac{91\sqrt{5}}{5}+3\sqrt{170}\approx 79.811651622
Factor
\frac{15 \sqrt{170} + 91 \sqrt{5}}{5} = 79.81165162171207
Share
Copied to clipboard
\frac{1}{5}\times 6\sqrt{5}+2\sqrt{5}+3\sqrt{170}+3\sqrt{80}+3\sqrt{5}
Factor 180=6^{2}\times 5. Rewrite the square root of the product \sqrt{6^{2}\times 5} as the product of square roots \sqrt{6^{2}}\sqrt{5}. Take the square root of 6^{2}.
\frac{6}{5}\sqrt{5}+2\sqrt{5}+3\sqrt{170}+3\sqrt{80}+3\sqrt{5}
Multiply \frac{1}{5} and 6 to get \frac{6}{5}.
\frac{16}{5}\sqrt{5}+3\sqrt{170}+3\sqrt{80}+3\sqrt{5}
Combine \frac{6}{5}\sqrt{5} and 2\sqrt{5} to get \frac{16}{5}\sqrt{5}.
\frac{16}{5}\sqrt{5}+3\sqrt{170}+3\times 4\sqrt{5}+3\sqrt{5}
Factor 80=4^{2}\times 5. Rewrite the square root of the product \sqrt{4^{2}\times 5} as the product of square roots \sqrt{4^{2}}\sqrt{5}. Take the square root of 4^{2}.
\frac{16}{5}\sqrt{5}+3\sqrt{170}+12\sqrt{5}+3\sqrt{5}
Multiply 3 and 4 to get 12.
\frac{76}{5}\sqrt{5}+3\sqrt{170}+3\sqrt{5}
Combine \frac{16}{5}\sqrt{5} and 12\sqrt{5} to get \frac{76}{5}\sqrt{5}.
\frac{91}{5}\sqrt{5}+3\sqrt{170}
Combine \frac{76}{5}\sqrt{5} and 3\sqrt{5} to get \frac{91}{5}\sqrt{5}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}