Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(2x+5\right)^{2}+\left(2x-5\right)^{2}\times 121=\left(4x^{2}-25\right)\times 22
Variable x cannot be equal to any of the values -\frac{5}{2},\frac{5}{2} since division by zero is not defined. Multiply both sides of the equation by \left(2x-5\right)^{2}\left(2x+5\right)^{2}, the least common multiple of 4x^{2}-20x+25,4x^{2}+20x+25,4x^{2}-25.
4x^{2}+20x+25+\left(2x-5\right)^{2}\times 121=\left(4x^{2}-25\right)\times 22
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+5\right)^{2}.
4x^{2}+20x+25+\left(4x^{2}-20x+25\right)\times 121=\left(4x^{2}-25\right)\times 22
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-5\right)^{2}.
4x^{2}+20x+25+484x^{2}-2420x+3025=\left(4x^{2}-25\right)\times 22
Use the distributive property to multiply 4x^{2}-20x+25 by 121.
488x^{2}+20x+25-2420x+3025=\left(4x^{2}-25\right)\times 22
Combine 4x^{2} and 484x^{2} to get 488x^{2}.
488x^{2}-2400x+25+3025=\left(4x^{2}-25\right)\times 22
Combine 20x and -2420x to get -2400x.
488x^{2}-2400x+3050=\left(4x^{2}-25\right)\times 22
Add 25 and 3025 to get 3050.
488x^{2}-2400x+3050=88x^{2}-550
Use the distributive property to multiply 4x^{2}-25 by 22.
488x^{2}-2400x+3050-88x^{2}=-550
Subtract 88x^{2} from both sides.
400x^{2}-2400x+3050=-550
Combine 488x^{2} and -88x^{2} to get 400x^{2}.
400x^{2}-2400x+3050+550=0
Add 550 to both sides.
400x^{2}-2400x+3600=0
Add 3050 and 550 to get 3600.
x=\frac{-\left(-2400\right)±\sqrt{\left(-2400\right)^{2}-4\times 400\times 3600}}{2\times 400}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 400 for a, -2400 for b, and 3600 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2400\right)±\sqrt{5760000-4\times 400\times 3600}}{2\times 400}
Square -2400.
x=\frac{-\left(-2400\right)±\sqrt{5760000-1600\times 3600}}{2\times 400}
Multiply -4 times 400.
x=\frac{-\left(-2400\right)±\sqrt{5760000-5760000}}{2\times 400}
Multiply -1600 times 3600.
x=\frac{-\left(-2400\right)±\sqrt{0}}{2\times 400}
Add 5760000 to -5760000.
x=-\frac{-2400}{2\times 400}
Take the square root of 0.
x=\frac{2400}{2\times 400}
The opposite of -2400 is 2400.
x=\frac{2400}{800}
Multiply 2 times 400.
x=3
Divide 2400 by 800.
\left(2x+5\right)^{2}+\left(2x-5\right)^{2}\times 121=\left(4x^{2}-25\right)\times 22
Variable x cannot be equal to any of the values -\frac{5}{2},\frac{5}{2} since division by zero is not defined. Multiply both sides of the equation by \left(2x-5\right)^{2}\left(2x+5\right)^{2}, the least common multiple of 4x^{2}-20x+25,4x^{2}+20x+25,4x^{2}-25.
4x^{2}+20x+25+\left(2x-5\right)^{2}\times 121=\left(4x^{2}-25\right)\times 22
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+5\right)^{2}.
4x^{2}+20x+25+\left(4x^{2}-20x+25\right)\times 121=\left(4x^{2}-25\right)\times 22
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-5\right)^{2}.
4x^{2}+20x+25+484x^{2}-2420x+3025=\left(4x^{2}-25\right)\times 22
Use the distributive property to multiply 4x^{2}-20x+25 by 121.
488x^{2}+20x+25-2420x+3025=\left(4x^{2}-25\right)\times 22
Combine 4x^{2} and 484x^{2} to get 488x^{2}.
488x^{2}-2400x+25+3025=\left(4x^{2}-25\right)\times 22
Combine 20x and -2420x to get -2400x.
488x^{2}-2400x+3050=\left(4x^{2}-25\right)\times 22
Add 25 and 3025 to get 3050.
488x^{2}-2400x+3050=88x^{2}-550
Use the distributive property to multiply 4x^{2}-25 by 22.
488x^{2}-2400x+3050-88x^{2}=-550
Subtract 88x^{2} from both sides.
400x^{2}-2400x+3050=-550
Combine 488x^{2} and -88x^{2} to get 400x^{2}.
400x^{2}-2400x=-550-3050
Subtract 3050 from both sides.
400x^{2}-2400x=-3600
Subtract 3050 from -550 to get -3600.
\frac{400x^{2}-2400x}{400}=-\frac{3600}{400}
Divide both sides by 400.
x^{2}+\left(-\frac{2400}{400}\right)x=-\frac{3600}{400}
Dividing by 400 undoes the multiplication by 400.
x^{2}-6x=-\frac{3600}{400}
Divide -2400 by 400.
x^{2}-6x=-9
Divide -3600 by 400.
x^{2}-6x+\left(-3\right)^{2}=-9+\left(-3\right)^{2}
Divide -6, the coefficient of the x term, by 2 to get -3. Then add the square of -3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-6x+9=-9+9
Square -3.
x^{2}-6x+9=0
Add -9 to 9.
\left(x-3\right)^{2}=0
Factor x^{2}-6x+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-3\right)^{2}}=\sqrt{0}
Take the square root of both sides of the equation.
x-3=0 x-3=0
Simplify.
x=3 x=3
Add 3 to both sides of the equation.
x=3
The equation is now solved. Solutions are the same.