Evaluate
-\frac{2}{5}=-0.4
Factor
-\frac{2}{5} = -0.4
Share
Copied to clipboard
\frac{1}{4\times \frac{1}{4}-\frac{4\times 2+1}{2}+1}
Calculate \frac{1}{2} to the power of 2 and get \frac{1}{4}.
\frac{1}{1-\frac{4\times 2+1}{2}+1}
Cancel out 4 and 4.
\frac{1}{1-\frac{8+1}{2}+1}
Multiply 4 and 2 to get 8.
\frac{1}{1-\frac{9}{2}+1}
Add 8 and 1 to get 9.
\frac{1}{\frac{2}{2}-\frac{9}{2}+1}
Convert 1 to fraction \frac{2}{2}.
\frac{1}{\frac{2-9}{2}+1}
Since \frac{2}{2} and \frac{9}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{-\frac{7}{2}+1}
Subtract 9 from 2 to get -7.
\frac{1}{-\frac{7}{2}+\frac{2}{2}}
Convert 1 to fraction \frac{2}{2}.
\frac{1}{\frac{-7+2}{2}}
Since -\frac{7}{2} and \frac{2}{2} have the same denominator, add them by adding their numerators.
\frac{1}{-\frac{5}{2}}
Add -7 and 2 to get -5.
1\left(-\frac{2}{5}\right)
Divide 1 by -\frac{5}{2} by multiplying 1 by the reciprocal of -\frac{5}{2}.
-\frac{2}{5}
Multiply 1 and -\frac{2}{5} to get -\frac{2}{5}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}