Solve for x
x=80\sqrt{2}+116\approx 229.13708499
x=116-80\sqrt{2}\approx 2.86291501
Graph
Share
Copied to clipboard
\left(\frac{1}{4}x+3\right)^{2}=\left(4\sqrt{x-2}\right)^{2}
Square both sides of the equation.
\frac{1}{16}x^{2}+\frac{3}{2}x+9=\left(4\sqrt{x-2}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\frac{1}{4}x+3\right)^{2}.
\frac{1}{16}x^{2}+\frac{3}{2}x+9=4^{2}\left(\sqrt{x-2}\right)^{2}
Expand \left(4\sqrt{x-2}\right)^{2}.
\frac{1}{16}x^{2}+\frac{3}{2}x+9=16\left(\sqrt{x-2}\right)^{2}
Calculate 4 to the power of 2 and get 16.
\frac{1}{16}x^{2}+\frac{3}{2}x+9=16\left(x-2\right)
Calculate \sqrt{x-2} to the power of 2 and get x-2.
\frac{1}{16}x^{2}+\frac{3}{2}x+9=16x-32
Use the distributive property to multiply 16 by x-2.
\frac{1}{16}x^{2}+\frac{3}{2}x+9-16x=-32
Subtract 16x from both sides.
\frac{1}{16}x^{2}-\frac{29}{2}x+9=-32
Combine \frac{3}{2}x and -16x to get -\frac{29}{2}x.
\frac{1}{16}x^{2}-\frac{29}{2}x+9+32=0
Add 32 to both sides.
\frac{1}{16}x^{2}-\frac{29}{2}x+41=0
Add 9 and 32 to get 41.
x=\frac{-\left(-\frac{29}{2}\right)±\sqrt{\left(-\frac{29}{2}\right)^{2}-4\times \frac{1}{16}\times 41}}{2\times \frac{1}{16}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{1}{16} for a, -\frac{29}{2} for b, and 41 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{29}{2}\right)±\sqrt{\frac{841}{4}-4\times \frac{1}{16}\times 41}}{2\times \frac{1}{16}}
Square -\frac{29}{2} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-\frac{29}{2}\right)±\sqrt{\frac{841}{4}-\frac{1}{4}\times 41}}{2\times \frac{1}{16}}
Multiply -4 times \frac{1}{16}.
x=\frac{-\left(-\frac{29}{2}\right)±\sqrt{\frac{841-41}{4}}}{2\times \frac{1}{16}}
Multiply -\frac{1}{4} times 41.
x=\frac{-\left(-\frac{29}{2}\right)±\sqrt{200}}{2\times \frac{1}{16}}
Add \frac{841}{4} to -\frac{41}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-\frac{29}{2}\right)±10\sqrt{2}}{2\times \frac{1}{16}}
Take the square root of 200.
x=\frac{\frac{29}{2}±10\sqrt{2}}{2\times \frac{1}{16}}
The opposite of -\frac{29}{2} is \frac{29}{2}.
x=\frac{\frac{29}{2}±10\sqrt{2}}{\frac{1}{8}}
Multiply 2 times \frac{1}{16}.
x=\frac{10\sqrt{2}+\frac{29}{2}}{\frac{1}{8}}
Now solve the equation x=\frac{\frac{29}{2}±10\sqrt{2}}{\frac{1}{8}} when ± is plus. Add \frac{29}{2} to 10\sqrt{2}.
x=80\sqrt{2}+116
Divide \frac{29}{2}+10\sqrt{2} by \frac{1}{8} by multiplying \frac{29}{2}+10\sqrt{2} by the reciprocal of \frac{1}{8}.
x=\frac{\frac{29}{2}-10\sqrt{2}}{\frac{1}{8}}
Now solve the equation x=\frac{\frac{29}{2}±10\sqrt{2}}{\frac{1}{8}} when ± is minus. Subtract 10\sqrt{2} from \frac{29}{2}.
x=116-80\sqrt{2}
Divide \frac{29}{2}-10\sqrt{2} by \frac{1}{8} by multiplying \frac{29}{2}-10\sqrt{2} by the reciprocal of \frac{1}{8}.
x=80\sqrt{2}+116 x=116-80\sqrt{2}
The equation is now solved.
\frac{1}{4}\left(80\sqrt{2}+116\right)+3=4\sqrt{80\sqrt{2}+116-2}
Substitute 80\sqrt{2}+116 for x in the equation \frac{1}{4}x+3=4\sqrt{x-2}.
20\times 2^{\frac{1}{2}}+32=32+20\times 2^{\frac{1}{2}}
Simplify. The value x=80\sqrt{2}+116 satisfies the equation.
\frac{1}{4}\left(116-80\sqrt{2}\right)+3=4\sqrt{116-80\sqrt{2}-2}
Substitute 116-80\sqrt{2} for x in the equation \frac{1}{4}x+3=4\sqrt{x-2}.
32-20\times 2^{\frac{1}{2}}=32-20\times 2^{\frac{1}{2}}
Simplify. The value x=116-80\sqrt{2} satisfies the equation.
x=80\sqrt{2}+116 x=116-80\sqrt{2}
List all solutions of \frac{x}{4}+3=4\sqrt{x-2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}