Evaluate
\frac{x-22}{12}
Expand
\frac{x}{12}-\frac{11}{6}
Graph
Share
Copied to clipboard
\frac{1}{4}\times 3x+\frac{1}{4}\left(-2\right)-\frac{1}{3}\left(2x+4\right)
Use the distributive property to multiply \frac{1}{4} by 3x-2.
\frac{3}{4}x+\frac{1}{4}\left(-2\right)-\frac{1}{3}\left(2x+4\right)
Multiply \frac{1}{4} and 3 to get \frac{3}{4}.
\frac{3}{4}x+\frac{-2}{4}-\frac{1}{3}\left(2x+4\right)
Multiply \frac{1}{4} and -2 to get \frac{-2}{4}.
\frac{3}{4}x-\frac{1}{2}-\frac{1}{3}\left(2x+4\right)
Reduce the fraction \frac{-2}{4} to lowest terms by extracting and canceling out 2.
\frac{3}{4}x-\frac{1}{2}-\frac{1}{3}\times 2x-\frac{1}{3}\times 4
Use the distributive property to multiply -\frac{1}{3} by 2x+4.
\frac{3}{4}x-\frac{1}{2}+\frac{-2}{3}x-\frac{1}{3}\times 4
Express -\frac{1}{3}\times 2 as a single fraction.
\frac{3}{4}x-\frac{1}{2}-\frac{2}{3}x-\frac{1}{3}\times 4
Fraction \frac{-2}{3} can be rewritten as -\frac{2}{3} by extracting the negative sign.
\frac{3}{4}x-\frac{1}{2}-\frac{2}{3}x+\frac{-4}{3}
Express -\frac{1}{3}\times 4 as a single fraction.
\frac{3}{4}x-\frac{1}{2}-\frac{2}{3}x-\frac{4}{3}
Fraction \frac{-4}{3} can be rewritten as -\frac{4}{3} by extracting the negative sign.
\frac{1}{12}x-\frac{1}{2}-\frac{4}{3}
Combine \frac{3}{4}x and -\frac{2}{3}x to get \frac{1}{12}x.
\frac{1}{12}x-\frac{3}{6}-\frac{8}{6}
Least common multiple of 2 and 3 is 6. Convert -\frac{1}{2} and \frac{4}{3} to fractions with denominator 6.
\frac{1}{12}x+\frac{-3-8}{6}
Since -\frac{3}{6} and \frac{8}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{12}x-\frac{11}{6}
Subtract 8 from -3 to get -11.
\frac{1}{4}\times 3x+\frac{1}{4}\left(-2\right)-\frac{1}{3}\left(2x+4\right)
Use the distributive property to multiply \frac{1}{4} by 3x-2.
\frac{3}{4}x+\frac{1}{4}\left(-2\right)-\frac{1}{3}\left(2x+4\right)
Multiply \frac{1}{4} and 3 to get \frac{3}{4}.
\frac{3}{4}x+\frac{-2}{4}-\frac{1}{3}\left(2x+4\right)
Multiply \frac{1}{4} and -2 to get \frac{-2}{4}.
\frac{3}{4}x-\frac{1}{2}-\frac{1}{3}\left(2x+4\right)
Reduce the fraction \frac{-2}{4} to lowest terms by extracting and canceling out 2.
\frac{3}{4}x-\frac{1}{2}-\frac{1}{3}\times 2x-\frac{1}{3}\times 4
Use the distributive property to multiply -\frac{1}{3} by 2x+4.
\frac{3}{4}x-\frac{1}{2}+\frac{-2}{3}x-\frac{1}{3}\times 4
Express -\frac{1}{3}\times 2 as a single fraction.
\frac{3}{4}x-\frac{1}{2}-\frac{2}{3}x-\frac{1}{3}\times 4
Fraction \frac{-2}{3} can be rewritten as -\frac{2}{3} by extracting the negative sign.
\frac{3}{4}x-\frac{1}{2}-\frac{2}{3}x+\frac{-4}{3}
Express -\frac{1}{3}\times 4 as a single fraction.
\frac{3}{4}x-\frac{1}{2}-\frac{2}{3}x-\frac{4}{3}
Fraction \frac{-4}{3} can be rewritten as -\frac{4}{3} by extracting the negative sign.
\frac{1}{12}x-\frac{1}{2}-\frac{4}{3}
Combine \frac{3}{4}x and -\frac{2}{3}x to get \frac{1}{12}x.
\frac{1}{12}x-\frac{3}{6}-\frac{8}{6}
Least common multiple of 2 and 3 is 6. Convert -\frac{1}{2} and \frac{4}{3} to fractions with denominator 6.
\frac{1}{12}x+\frac{-3-8}{6}
Since -\frac{3}{6} and \frac{8}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{12}x-\frac{11}{6}
Subtract 8 from -3 to get -11.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}