Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

6+48x-3\left(3x-1\right)=\frac{8}{3}\left(x+2\right)-48x
Multiply both sides of the equation by 24, the least common multiple of 4,8,3,6.
6+48x-9x+3=\frac{8}{3}\left(x+2\right)-48x
Use the distributive property to multiply -3 by 3x-1.
6+39x+3=\frac{8}{3}\left(x+2\right)-48x
Combine 48x and -9x to get 39x.
9+39x=\frac{8}{3}\left(x+2\right)-48x
Add 6 and 3 to get 9.
9+39x=\frac{8}{3}x+\frac{8}{3}\times 2-48x
Use the distributive property to multiply \frac{8}{3} by x+2.
9+39x=\frac{8}{3}x+\frac{8\times 2}{3}-48x
Express \frac{8}{3}\times 2 as a single fraction.
9+39x=\frac{8}{3}x+\frac{16}{3}-48x
Multiply 8 and 2 to get 16.
9+39x=-\frac{136}{3}x+\frac{16}{3}
Combine \frac{8}{3}x and -48x to get -\frac{136}{3}x.
9+39x+\frac{136}{3}x=\frac{16}{3}
Add \frac{136}{3}x to both sides.
9+\frac{253}{3}x=\frac{16}{3}
Combine 39x and \frac{136}{3}x to get \frac{253}{3}x.
\frac{253}{3}x=\frac{16}{3}-9
Subtract 9 from both sides.
\frac{253}{3}x=\frac{16}{3}-\frac{27}{3}
Convert 9 to fraction \frac{27}{3}.
\frac{253}{3}x=\frac{16-27}{3}
Since \frac{16}{3} and \frac{27}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{253}{3}x=-\frac{11}{3}
Subtract 27 from 16 to get -11.
x=-\frac{11}{3}\times \frac{3}{253}
Multiply both sides by \frac{3}{253}, the reciprocal of \frac{253}{3}.
x=\frac{-11\times 3}{3\times 253}
Multiply -\frac{11}{3} times \frac{3}{253} by multiplying numerator times numerator and denominator times denominator.
x=\frac{-11}{253}
Cancel out 3 in both numerator and denominator.
x=-\frac{1}{23}
Reduce the fraction \frac{-11}{253} to lowest terms by extracting and canceling out 11.