Evaluate
\frac{2n^{2}+5n-1}{4\left(n+2\right)\left(2n+1\right)}
Expand
\frac{2n^{2}+5n-1}{4\left(n+2\right)\left(2n+1\right)}
Share
Copied to clipboard
\frac{1}{4}+\frac{1}{2\left(2n+1\right)}+\frac{1}{2\left(2n+4\right)}-\frac{1}{2n+1}
Factor 4n+2.
\frac{2n+1}{4\left(2n+1\right)}+\frac{2}{4\left(2n+1\right)}+\frac{1}{2\left(2n+4\right)}-\frac{1}{2n+1}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4 and 2\left(2n+1\right) is 4\left(2n+1\right). Multiply \frac{1}{4} times \frac{2n+1}{2n+1}. Multiply \frac{1}{2\left(2n+1\right)} times \frac{2}{2}.
\frac{2n+1+2}{4\left(2n+1\right)}+\frac{1}{2\left(2n+4\right)}-\frac{1}{2n+1}
Since \frac{2n+1}{4\left(2n+1\right)} and \frac{2}{4\left(2n+1\right)} have the same denominator, add them by adding their numerators.
\frac{2n+3}{4\left(2n+1\right)}+\frac{1}{2\left(2n+4\right)}-\frac{1}{2n+1}
Combine like terms in 2n+1+2.
\frac{2n+3}{4\left(2n+1\right)}+\frac{1}{2^{2}\left(n+2\right)}-\frac{1}{2n+1}
Factor 2\left(2n+4\right).
\frac{\left(2n+3\right)\left(n+2\right)}{4\left(n+2\right)\left(2n+1\right)}+\frac{2n+1}{4\left(n+2\right)\left(2n+1\right)}-\frac{1}{2n+1}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4\left(2n+1\right) and 2^{2}\left(n+2\right) is 4\left(n+2\right)\left(2n+1\right). Multiply \frac{2n+3}{4\left(2n+1\right)} times \frac{n+2}{n+2}. Multiply \frac{1}{2^{2}\left(n+2\right)} times \frac{2n+1}{2n+1}.
\frac{\left(2n+3\right)\left(n+2\right)+2n+1}{4\left(n+2\right)\left(2n+1\right)}-\frac{1}{2n+1}
Since \frac{\left(2n+3\right)\left(n+2\right)}{4\left(n+2\right)\left(2n+1\right)} and \frac{2n+1}{4\left(n+2\right)\left(2n+1\right)} have the same denominator, add them by adding their numerators.
\frac{2n^{2}+4n+3n+6+2n+1}{4\left(n+2\right)\left(2n+1\right)}-\frac{1}{2n+1}
Do the multiplications in \left(2n+3\right)\left(n+2\right)+2n+1.
\frac{2n^{2}+9n+7}{4\left(n+2\right)\left(2n+1\right)}-\frac{1}{2n+1}
Combine like terms in 2n^{2}+4n+3n+6+2n+1.
\frac{2n^{2}+9n+7}{4\left(n+2\right)\left(2n+1\right)}-\frac{4\left(n+2\right)}{4\left(n+2\right)\left(2n+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4\left(n+2\right)\left(2n+1\right) and 2n+1 is 4\left(n+2\right)\left(2n+1\right). Multiply \frac{1}{2n+1} times \frac{4\left(n+2\right)}{4\left(n+2\right)}.
\frac{2n^{2}+9n+7-4\left(n+2\right)}{4\left(n+2\right)\left(2n+1\right)}
Since \frac{2n^{2}+9n+7}{4\left(n+2\right)\left(2n+1\right)} and \frac{4\left(n+2\right)}{4\left(n+2\right)\left(2n+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{2n^{2}+9n+7-4n-8}{4\left(n+2\right)\left(2n+1\right)}
Do the multiplications in 2n^{2}+9n+7-4\left(n+2\right).
\frac{2n^{2}+5n-1}{4\left(n+2\right)\left(2n+1\right)}
Combine like terms in 2n^{2}+9n+7-4n-8.
\frac{2\left(n-\left(-\frac{1}{4}\sqrt{33}-\frac{5}{4}\right)\right)\left(n-\left(\frac{1}{4}\sqrt{33}-\frac{5}{4}\right)\right)}{4\left(n+2\right)\left(2n+1\right)}
Factor the expressions that are not already factored in \frac{2n^{2}+5n-1}{4\left(n+2\right)\left(2n+1\right)}.
\frac{\left(n-\left(-\frac{1}{4}\sqrt{33}-\frac{5}{4}\right)\right)\left(n-\left(\frac{1}{4}\sqrt{33}-\frac{5}{4}\right)\right)}{2\left(n+2\right)\left(2n+1\right)}
Cancel out 2 in both numerator and denominator.
\frac{\left(n-\left(-\frac{1}{4}\sqrt{33}-\frac{5}{4}\right)\right)\left(n-\left(\frac{1}{4}\sqrt{33}-\frac{5}{4}\right)\right)}{4n^{2}+10n+4}
Expand 2\left(n+2\right)\left(2n+1\right).
\frac{\left(n-\left(-\frac{1}{4}\sqrt{33}\right)-\left(-\frac{5}{4}\right)\right)\left(n-\left(\frac{1}{4}\sqrt{33}-\frac{5}{4}\right)\right)}{4n^{2}+10n+4}
To find the opposite of -\frac{1}{4}\sqrt{33}-\frac{5}{4}, find the opposite of each term.
\frac{\left(n+\frac{1}{4}\sqrt{33}-\left(-\frac{5}{4}\right)\right)\left(n-\left(\frac{1}{4}\sqrt{33}-\frac{5}{4}\right)\right)}{4n^{2}+10n+4}
The opposite of -\frac{1}{4}\sqrt{33} is \frac{1}{4}\sqrt{33}.
\frac{\left(n+\frac{1}{4}\sqrt{33}+\frac{5}{4}\right)\left(n-\left(\frac{1}{4}\sqrt{33}-\frac{5}{4}\right)\right)}{4n^{2}+10n+4}
The opposite of -\frac{5}{4} is \frac{5}{4}.
\frac{\left(n+\frac{1}{4}\sqrt{33}+\frac{5}{4}\right)\left(n-\frac{1}{4}\sqrt{33}-\left(-\frac{5}{4}\right)\right)}{4n^{2}+10n+4}
To find the opposite of \frac{1}{4}\sqrt{33}-\frac{5}{4}, find the opposite of each term.
\frac{\left(n+\frac{1}{4}\sqrt{33}+\frac{5}{4}\right)\left(n-\frac{1}{4}\sqrt{33}+\frac{5}{4}\right)}{4n^{2}+10n+4}
The opposite of -\frac{5}{4} is \frac{5}{4}.
\frac{n^{2}+n\left(-\frac{1}{4}\right)\sqrt{33}+n\times \frac{5}{4}+\frac{1}{4}\sqrt{33}n+\frac{1}{4}\sqrt{33}\left(-\frac{1}{4}\right)\sqrt{33}+\frac{1}{4}\sqrt{33}\times \frac{5}{4}+\frac{5}{4}n+\frac{5}{4}\left(-\frac{1}{4}\right)\sqrt{33}+\frac{5}{4}\times \frac{5}{4}}{4n^{2}+10n+4}
Apply the distributive property by multiplying each term of n+\frac{1}{4}\sqrt{33}+\frac{5}{4} by each term of n-\frac{1}{4}\sqrt{33}+\frac{5}{4}.
\frac{n^{2}+n\left(-\frac{1}{4}\right)\sqrt{33}+n\times \frac{5}{4}+\frac{1}{4}\sqrt{33}n+\frac{1}{4}\times 33\left(-\frac{1}{4}\right)+\frac{1}{4}\sqrt{33}\times \frac{5}{4}+\frac{5}{4}n+\frac{5}{4}\left(-\frac{1}{4}\right)\sqrt{33}+\frac{5}{4}\times \frac{5}{4}}{4n^{2}+10n+4}
Multiply \sqrt{33} and \sqrt{33} to get 33.
\frac{n^{2}+n\times \frac{5}{4}+\frac{1}{4}\times 33\left(-\frac{1}{4}\right)+\frac{1}{4}\sqrt{33}\times \frac{5}{4}+\frac{5}{4}n+\frac{5}{4}\left(-\frac{1}{4}\right)\sqrt{33}+\frac{5}{4}\times \frac{5}{4}}{4n^{2}+10n+4}
Combine n\left(-\frac{1}{4}\right)\sqrt{33} and \frac{1}{4}\sqrt{33}n to get 0.
\frac{n^{2}+n\times \frac{5}{4}+\frac{33}{4}\left(-\frac{1}{4}\right)+\frac{1}{4}\sqrt{33}\times \frac{5}{4}+\frac{5}{4}n+\frac{5}{4}\left(-\frac{1}{4}\right)\sqrt{33}+\frac{5}{4}\times \frac{5}{4}}{4n^{2}+10n+4}
Multiply \frac{1}{4} and 33 to get \frac{33}{4}.
\frac{n^{2}+n\times \frac{5}{4}+\frac{33\left(-1\right)}{4\times 4}+\frac{1}{4}\sqrt{33}\times \frac{5}{4}+\frac{5}{4}n+\frac{5}{4}\left(-\frac{1}{4}\right)\sqrt{33}+\frac{5}{4}\times \frac{5}{4}}{4n^{2}+10n+4}
Multiply \frac{33}{4} times -\frac{1}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{n^{2}+n\times \frac{5}{4}+\frac{-33}{16}+\frac{1}{4}\sqrt{33}\times \frac{5}{4}+\frac{5}{4}n+\frac{5}{4}\left(-\frac{1}{4}\right)\sqrt{33}+\frac{5}{4}\times \frac{5}{4}}{4n^{2}+10n+4}
Do the multiplications in the fraction \frac{33\left(-1\right)}{4\times 4}.
\frac{n^{2}+n\times \frac{5}{4}-\frac{33}{16}+\frac{1}{4}\sqrt{33}\times \frac{5}{4}+\frac{5}{4}n+\frac{5}{4}\left(-\frac{1}{4}\right)\sqrt{33}+\frac{5}{4}\times \frac{5}{4}}{4n^{2}+10n+4}
Fraction \frac{-33}{16} can be rewritten as -\frac{33}{16} by extracting the negative sign.
\frac{n^{2}+n\times \frac{5}{4}-\frac{33}{16}+\frac{1\times 5}{4\times 4}\sqrt{33}+\frac{5}{4}n+\frac{5}{4}\left(-\frac{1}{4}\right)\sqrt{33}+\frac{5}{4}\times \frac{5}{4}}{4n^{2}+10n+4}
Multiply \frac{1}{4} times \frac{5}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{n^{2}+n\times \frac{5}{4}-\frac{33}{16}+\frac{5}{16}\sqrt{33}+\frac{5}{4}n+\frac{5}{4}\left(-\frac{1}{4}\right)\sqrt{33}+\frac{5}{4}\times \frac{5}{4}}{4n^{2}+10n+4}
Do the multiplications in the fraction \frac{1\times 5}{4\times 4}.
\frac{n^{2}+\frac{5}{2}n-\frac{33}{16}+\frac{5}{16}\sqrt{33}+\frac{5}{4}\left(-\frac{1}{4}\right)\sqrt{33}+\frac{5}{4}\times \frac{5}{4}}{4n^{2}+10n+4}
Combine n\times \frac{5}{4} and \frac{5}{4}n to get \frac{5}{2}n.
\frac{n^{2}+\frac{5}{2}n-\frac{33}{16}+\frac{5}{16}\sqrt{33}+\frac{5\left(-1\right)}{4\times 4}\sqrt{33}+\frac{5}{4}\times \frac{5}{4}}{4n^{2}+10n+4}
Multiply \frac{5}{4} times -\frac{1}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{n^{2}+\frac{5}{2}n-\frac{33}{16}+\frac{5}{16}\sqrt{33}+\frac{-5}{16}\sqrt{33}+\frac{5}{4}\times \frac{5}{4}}{4n^{2}+10n+4}
Do the multiplications in the fraction \frac{5\left(-1\right)}{4\times 4}.
\frac{n^{2}+\frac{5}{2}n-\frac{33}{16}+\frac{5}{16}\sqrt{33}-\frac{5}{16}\sqrt{33}+\frac{5}{4}\times \frac{5}{4}}{4n^{2}+10n+4}
Fraction \frac{-5}{16} can be rewritten as -\frac{5}{16} by extracting the negative sign.
\frac{n^{2}+\frac{5}{2}n-\frac{33}{16}+\frac{5}{4}\times \frac{5}{4}}{4n^{2}+10n+4}
Combine \frac{5}{16}\sqrt{33} and -\frac{5}{16}\sqrt{33} to get 0.
\frac{n^{2}+\frac{5}{2}n-\frac{33}{16}+\frac{5\times 5}{4\times 4}}{4n^{2}+10n+4}
Multiply \frac{5}{4} times \frac{5}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{n^{2}+\frac{5}{2}n-\frac{33}{16}+\frac{25}{16}}{4n^{2}+10n+4}
Do the multiplications in the fraction \frac{5\times 5}{4\times 4}.
\frac{n^{2}+\frac{5}{2}n+\frac{-33+25}{16}}{4n^{2}+10n+4}
Since -\frac{33}{16} and \frac{25}{16} have the same denominator, add them by adding their numerators.
\frac{n^{2}+\frac{5}{2}n+\frac{-8}{16}}{4n^{2}+10n+4}
Add -33 and 25 to get -8.
\frac{n^{2}+\frac{5}{2}n-\frac{1}{2}}{4n^{2}+10n+4}
Reduce the fraction \frac{-8}{16} to lowest terms by extracting and canceling out 8.
\frac{\frac{1}{2}\times 2\left(n-\left(-\frac{1}{4}\sqrt{33}-\frac{5}{4}\right)\right)\left(n-\left(\frac{1}{4}\sqrt{33}-\frac{5}{4}\right)\right)}{2\left(n+2\right)\left(2n+1\right)}
Factor the expressions that are not already factored.
\frac{\frac{1}{2}\left(n-\left(-\frac{1}{4}\sqrt{33}-\frac{5}{4}\right)\right)\left(n-\left(\frac{1}{4}\sqrt{33}-\frac{5}{4}\right)\right)}{\left(n+2\right)\left(2n+1\right)}
Cancel out 2 in both numerator and denominator.
\frac{\frac{1}{2}n^{2}+\frac{5}{4}n-\frac{1}{4}}{2n^{2}+5n+2}
Expand the expression.
\frac{1}{4}+\frac{1}{2\left(2n+1\right)}+\frac{1}{2\left(2n+4\right)}-\frac{1}{2n+1}
Factor 4n+2.
\frac{2n+1}{4\left(2n+1\right)}+\frac{2}{4\left(2n+1\right)}+\frac{1}{2\left(2n+4\right)}-\frac{1}{2n+1}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4 and 2\left(2n+1\right) is 4\left(2n+1\right). Multiply \frac{1}{4} times \frac{2n+1}{2n+1}. Multiply \frac{1}{2\left(2n+1\right)} times \frac{2}{2}.
\frac{2n+1+2}{4\left(2n+1\right)}+\frac{1}{2\left(2n+4\right)}-\frac{1}{2n+1}
Since \frac{2n+1}{4\left(2n+1\right)} and \frac{2}{4\left(2n+1\right)} have the same denominator, add them by adding their numerators.
\frac{2n+3}{4\left(2n+1\right)}+\frac{1}{2\left(2n+4\right)}-\frac{1}{2n+1}
Combine like terms in 2n+1+2.
\frac{2n+3}{4\left(2n+1\right)}+\frac{1}{2^{2}\left(n+2\right)}-\frac{1}{2n+1}
Factor 2\left(2n+4\right).
\frac{\left(2n+3\right)\left(n+2\right)}{4\left(n+2\right)\left(2n+1\right)}+\frac{2n+1}{4\left(n+2\right)\left(2n+1\right)}-\frac{1}{2n+1}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4\left(2n+1\right) and 2^{2}\left(n+2\right) is 4\left(n+2\right)\left(2n+1\right). Multiply \frac{2n+3}{4\left(2n+1\right)} times \frac{n+2}{n+2}. Multiply \frac{1}{2^{2}\left(n+2\right)} times \frac{2n+1}{2n+1}.
\frac{\left(2n+3\right)\left(n+2\right)+2n+1}{4\left(n+2\right)\left(2n+1\right)}-\frac{1}{2n+1}
Since \frac{\left(2n+3\right)\left(n+2\right)}{4\left(n+2\right)\left(2n+1\right)} and \frac{2n+1}{4\left(n+2\right)\left(2n+1\right)} have the same denominator, add them by adding their numerators.
\frac{2n^{2}+4n+3n+6+2n+1}{4\left(n+2\right)\left(2n+1\right)}-\frac{1}{2n+1}
Do the multiplications in \left(2n+3\right)\left(n+2\right)+2n+1.
\frac{2n^{2}+9n+7}{4\left(n+2\right)\left(2n+1\right)}-\frac{1}{2n+1}
Combine like terms in 2n^{2}+4n+3n+6+2n+1.
\frac{2n^{2}+9n+7}{4\left(n+2\right)\left(2n+1\right)}-\frac{4\left(n+2\right)}{4\left(n+2\right)\left(2n+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4\left(n+2\right)\left(2n+1\right) and 2n+1 is 4\left(n+2\right)\left(2n+1\right). Multiply \frac{1}{2n+1} times \frac{4\left(n+2\right)}{4\left(n+2\right)}.
\frac{2n^{2}+9n+7-4\left(n+2\right)}{4\left(n+2\right)\left(2n+1\right)}
Since \frac{2n^{2}+9n+7}{4\left(n+2\right)\left(2n+1\right)} and \frac{4\left(n+2\right)}{4\left(n+2\right)\left(2n+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{2n^{2}+9n+7-4n-8}{4\left(n+2\right)\left(2n+1\right)}
Do the multiplications in 2n^{2}+9n+7-4\left(n+2\right).
\frac{2n^{2}+5n-1}{4\left(n+2\right)\left(2n+1\right)}
Combine like terms in 2n^{2}+9n+7-4n-8.
\frac{2\left(n-\left(-\frac{1}{4}\sqrt{33}-\frac{5}{4}\right)\right)\left(n-\left(\frac{1}{4}\sqrt{33}-\frac{5}{4}\right)\right)}{4\left(n+2\right)\left(2n+1\right)}
Factor the expressions that are not already factored in \frac{2n^{2}+5n-1}{4\left(n+2\right)\left(2n+1\right)}.
\frac{\left(n-\left(-\frac{1}{4}\sqrt{33}-\frac{5}{4}\right)\right)\left(n-\left(\frac{1}{4}\sqrt{33}-\frac{5}{4}\right)\right)}{2\left(n+2\right)\left(2n+1\right)}
Cancel out 2 in both numerator and denominator.
\frac{\left(n-\left(-\frac{1}{4}\sqrt{33}-\frac{5}{4}\right)\right)\left(n-\left(\frac{1}{4}\sqrt{33}-\frac{5}{4}\right)\right)}{4n^{2}+10n+4}
Expand 2\left(n+2\right)\left(2n+1\right).
\frac{\left(n-\left(-\frac{1}{4}\sqrt{33}\right)-\left(-\frac{5}{4}\right)\right)\left(n-\left(\frac{1}{4}\sqrt{33}-\frac{5}{4}\right)\right)}{4n^{2}+10n+4}
To find the opposite of -\frac{1}{4}\sqrt{33}-\frac{5}{4}, find the opposite of each term.
\frac{\left(n+\frac{1}{4}\sqrt{33}-\left(-\frac{5}{4}\right)\right)\left(n-\left(\frac{1}{4}\sqrt{33}-\frac{5}{4}\right)\right)}{4n^{2}+10n+4}
The opposite of -\frac{1}{4}\sqrt{33} is \frac{1}{4}\sqrt{33}.
\frac{\left(n+\frac{1}{4}\sqrt{33}+\frac{5}{4}\right)\left(n-\left(\frac{1}{4}\sqrt{33}-\frac{5}{4}\right)\right)}{4n^{2}+10n+4}
The opposite of -\frac{5}{4} is \frac{5}{4}.
\frac{\left(n+\frac{1}{4}\sqrt{33}+\frac{5}{4}\right)\left(n-\frac{1}{4}\sqrt{33}-\left(-\frac{5}{4}\right)\right)}{4n^{2}+10n+4}
To find the opposite of \frac{1}{4}\sqrt{33}-\frac{5}{4}, find the opposite of each term.
\frac{\left(n+\frac{1}{4}\sqrt{33}+\frac{5}{4}\right)\left(n-\frac{1}{4}\sqrt{33}+\frac{5}{4}\right)}{4n^{2}+10n+4}
The opposite of -\frac{5}{4} is \frac{5}{4}.
\frac{n^{2}+n\left(-\frac{1}{4}\right)\sqrt{33}+n\times \frac{5}{4}+\frac{1}{4}\sqrt{33}n+\frac{1}{4}\sqrt{33}\left(-\frac{1}{4}\right)\sqrt{33}+\frac{1}{4}\sqrt{33}\times \frac{5}{4}+\frac{5}{4}n+\frac{5}{4}\left(-\frac{1}{4}\right)\sqrt{33}+\frac{5}{4}\times \frac{5}{4}}{4n^{2}+10n+4}
Apply the distributive property by multiplying each term of n+\frac{1}{4}\sqrt{33}+\frac{5}{4} by each term of n-\frac{1}{4}\sqrt{33}+\frac{5}{4}.
\frac{n^{2}+n\left(-\frac{1}{4}\right)\sqrt{33}+n\times \frac{5}{4}+\frac{1}{4}\sqrt{33}n+\frac{1}{4}\times 33\left(-\frac{1}{4}\right)+\frac{1}{4}\sqrt{33}\times \frac{5}{4}+\frac{5}{4}n+\frac{5}{4}\left(-\frac{1}{4}\right)\sqrt{33}+\frac{5}{4}\times \frac{5}{4}}{4n^{2}+10n+4}
Multiply \sqrt{33} and \sqrt{33} to get 33.
\frac{n^{2}+n\times \frac{5}{4}+\frac{1}{4}\times 33\left(-\frac{1}{4}\right)+\frac{1}{4}\sqrt{33}\times \frac{5}{4}+\frac{5}{4}n+\frac{5}{4}\left(-\frac{1}{4}\right)\sqrt{33}+\frac{5}{4}\times \frac{5}{4}}{4n^{2}+10n+4}
Combine n\left(-\frac{1}{4}\right)\sqrt{33} and \frac{1}{4}\sqrt{33}n to get 0.
\frac{n^{2}+n\times \frac{5}{4}+\frac{33}{4}\left(-\frac{1}{4}\right)+\frac{1}{4}\sqrt{33}\times \frac{5}{4}+\frac{5}{4}n+\frac{5}{4}\left(-\frac{1}{4}\right)\sqrt{33}+\frac{5}{4}\times \frac{5}{4}}{4n^{2}+10n+4}
Multiply \frac{1}{4} and 33 to get \frac{33}{4}.
\frac{n^{2}+n\times \frac{5}{4}+\frac{33\left(-1\right)}{4\times 4}+\frac{1}{4}\sqrt{33}\times \frac{5}{4}+\frac{5}{4}n+\frac{5}{4}\left(-\frac{1}{4}\right)\sqrt{33}+\frac{5}{4}\times \frac{5}{4}}{4n^{2}+10n+4}
Multiply \frac{33}{4} times -\frac{1}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{n^{2}+n\times \frac{5}{4}+\frac{-33}{16}+\frac{1}{4}\sqrt{33}\times \frac{5}{4}+\frac{5}{4}n+\frac{5}{4}\left(-\frac{1}{4}\right)\sqrt{33}+\frac{5}{4}\times \frac{5}{4}}{4n^{2}+10n+4}
Do the multiplications in the fraction \frac{33\left(-1\right)}{4\times 4}.
\frac{n^{2}+n\times \frac{5}{4}-\frac{33}{16}+\frac{1}{4}\sqrt{33}\times \frac{5}{4}+\frac{5}{4}n+\frac{5}{4}\left(-\frac{1}{4}\right)\sqrt{33}+\frac{5}{4}\times \frac{5}{4}}{4n^{2}+10n+4}
Fraction \frac{-33}{16} can be rewritten as -\frac{33}{16} by extracting the negative sign.
\frac{n^{2}+n\times \frac{5}{4}-\frac{33}{16}+\frac{1\times 5}{4\times 4}\sqrt{33}+\frac{5}{4}n+\frac{5}{4}\left(-\frac{1}{4}\right)\sqrt{33}+\frac{5}{4}\times \frac{5}{4}}{4n^{2}+10n+4}
Multiply \frac{1}{4} times \frac{5}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{n^{2}+n\times \frac{5}{4}-\frac{33}{16}+\frac{5}{16}\sqrt{33}+\frac{5}{4}n+\frac{5}{4}\left(-\frac{1}{4}\right)\sqrt{33}+\frac{5}{4}\times \frac{5}{4}}{4n^{2}+10n+4}
Do the multiplications in the fraction \frac{1\times 5}{4\times 4}.
\frac{n^{2}+\frac{5}{2}n-\frac{33}{16}+\frac{5}{16}\sqrt{33}+\frac{5}{4}\left(-\frac{1}{4}\right)\sqrt{33}+\frac{5}{4}\times \frac{5}{4}}{4n^{2}+10n+4}
Combine n\times \frac{5}{4} and \frac{5}{4}n to get \frac{5}{2}n.
\frac{n^{2}+\frac{5}{2}n-\frac{33}{16}+\frac{5}{16}\sqrt{33}+\frac{5\left(-1\right)}{4\times 4}\sqrt{33}+\frac{5}{4}\times \frac{5}{4}}{4n^{2}+10n+4}
Multiply \frac{5}{4} times -\frac{1}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{n^{2}+\frac{5}{2}n-\frac{33}{16}+\frac{5}{16}\sqrt{33}+\frac{-5}{16}\sqrt{33}+\frac{5}{4}\times \frac{5}{4}}{4n^{2}+10n+4}
Do the multiplications in the fraction \frac{5\left(-1\right)}{4\times 4}.
\frac{n^{2}+\frac{5}{2}n-\frac{33}{16}+\frac{5}{16}\sqrt{33}-\frac{5}{16}\sqrt{33}+\frac{5}{4}\times \frac{5}{4}}{4n^{2}+10n+4}
Fraction \frac{-5}{16} can be rewritten as -\frac{5}{16} by extracting the negative sign.
\frac{n^{2}+\frac{5}{2}n-\frac{33}{16}+\frac{5}{4}\times \frac{5}{4}}{4n^{2}+10n+4}
Combine \frac{5}{16}\sqrt{33} and -\frac{5}{16}\sqrt{33} to get 0.
\frac{n^{2}+\frac{5}{2}n-\frac{33}{16}+\frac{5\times 5}{4\times 4}}{4n^{2}+10n+4}
Multiply \frac{5}{4} times \frac{5}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{n^{2}+\frac{5}{2}n-\frac{33}{16}+\frac{25}{16}}{4n^{2}+10n+4}
Do the multiplications in the fraction \frac{5\times 5}{4\times 4}.
\frac{n^{2}+\frac{5}{2}n+\frac{-33+25}{16}}{4n^{2}+10n+4}
Since -\frac{33}{16} and \frac{25}{16} have the same denominator, add them by adding their numerators.
\frac{n^{2}+\frac{5}{2}n+\frac{-8}{16}}{4n^{2}+10n+4}
Add -33 and 25 to get -8.
\frac{n^{2}+\frac{5}{2}n-\frac{1}{2}}{4n^{2}+10n+4}
Reduce the fraction \frac{-8}{16} to lowest terms by extracting and canceling out 8.
\frac{\frac{1}{2}\times 2\left(n-\left(-\frac{1}{4}\sqrt{33}-\frac{5}{4}\right)\right)\left(n-\left(\frac{1}{4}\sqrt{33}-\frac{5}{4}\right)\right)}{2\left(n+2\right)\left(2n+1\right)}
Factor the expressions that are not already factored.
\frac{\frac{1}{2}\left(n-\left(-\frac{1}{4}\sqrt{33}-\frac{5}{4}\right)\right)\left(n-\left(\frac{1}{4}\sqrt{33}-\frac{5}{4}\right)\right)}{\left(n+2\right)\left(2n+1\right)}
Cancel out 2 in both numerator and denominator.
\frac{\frac{1}{2}n^{2}+\frac{5}{4}n-\frac{1}{4}}{2n^{2}+5n+2}
Expand the expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}