Solve for x
x=-340
x=20
Graph
Share
Copied to clipboard
\frac{1}{4}x^{2}+80x-1700=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-80±\sqrt{80^{2}-4\times \frac{1}{4}\left(-1700\right)}}{2\times \frac{1}{4}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{1}{4} for a, 80 for b, and -1700 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-80±\sqrt{6400-4\times \frac{1}{4}\left(-1700\right)}}{2\times \frac{1}{4}}
Square 80.
x=\frac{-80±\sqrt{6400-\left(-1700\right)}}{2\times \frac{1}{4}}
Multiply -4 times \frac{1}{4}.
x=\frac{-80±\sqrt{6400+1700}}{2\times \frac{1}{4}}
Multiply -1 times -1700.
x=\frac{-80±\sqrt{8100}}{2\times \frac{1}{4}}
Add 6400 to 1700.
x=\frac{-80±90}{2\times \frac{1}{4}}
Take the square root of 8100.
x=\frac{-80±90}{\frac{1}{2}}
Multiply 2 times \frac{1}{4}.
x=\frac{10}{\frac{1}{2}}
Now solve the equation x=\frac{-80±90}{\frac{1}{2}} when ± is plus. Add -80 to 90.
x=20
Divide 10 by \frac{1}{2} by multiplying 10 by the reciprocal of \frac{1}{2}.
x=-\frac{170}{\frac{1}{2}}
Now solve the equation x=\frac{-80±90}{\frac{1}{2}} when ± is minus. Subtract 90 from -80.
x=-340
Divide -170 by \frac{1}{2} by multiplying -170 by the reciprocal of \frac{1}{2}.
x=20 x=-340
The equation is now solved.
\frac{1}{4}x^{2}+80x-1700=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{1}{4}x^{2}+80x-1700-\left(-1700\right)=-\left(-1700\right)
Add 1700 to both sides of the equation.
\frac{1}{4}x^{2}+80x=-\left(-1700\right)
Subtracting -1700 from itself leaves 0.
\frac{1}{4}x^{2}+80x=1700
Subtract -1700 from 0.
\frac{\frac{1}{4}x^{2}+80x}{\frac{1}{4}}=\frac{1700}{\frac{1}{4}}
Multiply both sides by 4.
x^{2}+\frac{80}{\frac{1}{4}}x=\frac{1700}{\frac{1}{4}}
Dividing by \frac{1}{4} undoes the multiplication by \frac{1}{4}.
x^{2}+320x=\frac{1700}{\frac{1}{4}}
Divide 80 by \frac{1}{4} by multiplying 80 by the reciprocal of \frac{1}{4}.
x^{2}+320x=6800
Divide 1700 by \frac{1}{4} by multiplying 1700 by the reciprocal of \frac{1}{4}.
x^{2}+320x+160^{2}=6800+160^{2}
Divide 320, the coefficient of the x term, by 2 to get 160. Then add the square of 160 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+320x+25600=6800+25600
Square 160.
x^{2}+320x+25600=32400
Add 6800 to 25600.
\left(x+160\right)^{2}=32400
Factor x^{2}+320x+25600. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+160\right)^{2}}=\sqrt{32400}
Take the square root of both sides of the equation.
x+160=180 x+160=-180
Simplify.
x=20 x=-340
Subtract 160 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}