Solve for x
x = \frac{2 \sqrt{34} + 14}{5} \approx 5.132380758
x=\frac{14-2\sqrt{34}}{5}\approx 0.467619242
Graph
Share
Copied to clipboard
\frac{1}{2}x^{2}+1+\left(-\frac{2}{3}x^{2}+\frac{7}{3}x-1\right)^{2}=x^{2}+\left(-\frac{2}{3}x^{2}+\frac{7}{3}x\right)^{2}
Combine \frac{1}{4}x^{2} and \frac{1}{4}x^{2} to get \frac{1}{2}x^{2}.
\frac{1}{2}x^{2}+1+\frac{4}{9}x^{4}-\frac{28}{9}x^{3}+\frac{61}{9}x^{2}-\frac{14}{3}x+1=x^{2}+\left(-\frac{2}{3}x^{2}+\frac{7}{3}x\right)^{2}
Square -\frac{2}{3}x^{2}+\frac{7}{3}x-1.
\frac{131}{18}x^{2}+1+\frac{4}{9}x^{4}-\frac{28}{9}x^{3}-\frac{14}{3}x+1=x^{2}+\left(-\frac{2}{3}x^{2}+\frac{7}{3}x\right)^{2}
Combine \frac{1}{2}x^{2} and \frac{61}{9}x^{2} to get \frac{131}{18}x^{2}.
\frac{131}{18}x^{2}+2+\frac{4}{9}x^{4}-\frac{28}{9}x^{3}-\frac{14}{3}x=x^{2}+\left(-\frac{2}{3}x^{2}+\frac{7}{3}x\right)^{2}
Add 1 and 1 to get 2.
\frac{131}{18}x^{2}+2+\frac{4}{9}x^{4}-\frac{28}{9}x^{3}-\frac{14}{3}x=x^{2}+\frac{4}{9}\left(x^{2}\right)^{2}-\frac{28}{9}x^{2}x+\frac{49}{9}x^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(-\frac{2}{3}x^{2}+\frac{7}{3}x\right)^{2}.
\frac{131}{18}x^{2}+2+\frac{4}{9}x^{4}-\frac{28}{9}x^{3}-\frac{14}{3}x=x^{2}+\frac{4}{9}x^{4}-\frac{28}{9}x^{2}x+\frac{49}{9}x^{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{131}{18}x^{2}+2+\frac{4}{9}x^{4}-\frac{28}{9}x^{3}-\frac{14}{3}x=x^{2}+\frac{4}{9}x^{4}-\frac{28}{9}x^{3}+\frac{49}{9}x^{2}
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
\frac{131}{18}x^{2}+2+\frac{4}{9}x^{4}-\frac{28}{9}x^{3}-\frac{14}{3}x=\frac{58}{9}x^{2}+\frac{4}{9}x^{4}-\frac{28}{9}x^{3}
Combine x^{2} and \frac{49}{9}x^{2} to get \frac{58}{9}x^{2}.
\frac{131}{18}x^{2}+2+\frac{4}{9}x^{4}-\frac{28}{9}x^{3}-\frac{14}{3}x-\frac{58}{9}x^{2}=\frac{4}{9}x^{4}-\frac{28}{9}x^{3}
Subtract \frac{58}{9}x^{2} from both sides.
\frac{5}{6}x^{2}+2+\frac{4}{9}x^{4}-\frac{28}{9}x^{3}-\frac{14}{3}x=\frac{4}{9}x^{4}-\frac{28}{9}x^{3}
Combine \frac{131}{18}x^{2} and -\frac{58}{9}x^{2} to get \frac{5}{6}x^{2}.
\frac{5}{6}x^{2}+2+\frac{4}{9}x^{4}-\frac{28}{9}x^{3}-\frac{14}{3}x-\frac{4}{9}x^{4}=-\frac{28}{9}x^{3}
Subtract \frac{4}{9}x^{4} from both sides.
\frac{5}{6}x^{2}+2-\frac{28}{9}x^{3}-\frac{14}{3}x=-\frac{28}{9}x^{3}
Combine \frac{4}{9}x^{4} and -\frac{4}{9}x^{4} to get 0.
\frac{5}{6}x^{2}+2-\frac{28}{9}x^{3}-\frac{14}{3}x+\frac{28}{9}x^{3}=0
Add \frac{28}{9}x^{3} to both sides.
\frac{5}{6}x^{2}+2-\frac{14}{3}x=0
Combine -\frac{28}{9}x^{3} and \frac{28}{9}x^{3} to get 0.
\frac{5}{6}x^{2}-\frac{14}{3}x+2=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-\frac{14}{3}\right)±\sqrt{\left(-\frac{14}{3}\right)^{2}-4\times \frac{5}{6}\times 2}}{2\times \frac{5}{6}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{5}{6} for a, -\frac{14}{3} for b, and 2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{14}{3}\right)±\sqrt{\frac{196}{9}-4\times \frac{5}{6}\times 2}}{2\times \frac{5}{6}}
Square -\frac{14}{3} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-\frac{14}{3}\right)±\sqrt{\frac{196}{9}-\frac{10}{3}\times 2}}{2\times \frac{5}{6}}
Multiply -4 times \frac{5}{6}.
x=\frac{-\left(-\frac{14}{3}\right)±\sqrt{\frac{196}{9}-\frac{20}{3}}}{2\times \frac{5}{6}}
Multiply -\frac{10}{3} times 2.
x=\frac{-\left(-\frac{14}{3}\right)±\sqrt{\frac{136}{9}}}{2\times \frac{5}{6}}
Add \frac{196}{9} to -\frac{20}{3} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-\frac{14}{3}\right)±\frac{2\sqrt{34}}{3}}{2\times \frac{5}{6}}
Take the square root of \frac{136}{9}.
x=\frac{\frac{14}{3}±\frac{2\sqrt{34}}{3}}{2\times \frac{5}{6}}
The opposite of -\frac{14}{3} is \frac{14}{3}.
x=\frac{\frac{14}{3}±\frac{2\sqrt{34}}{3}}{\frac{5}{3}}
Multiply 2 times \frac{5}{6}.
x=\frac{2\sqrt{34}+14}{\frac{5}{3}\times 3}
Now solve the equation x=\frac{\frac{14}{3}±\frac{2\sqrt{34}}{3}}{\frac{5}{3}} when ± is plus. Add \frac{14}{3} to \frac{2\sqrt{34}}{3}.
x=\frac{2\sqrt{34}+14}{5}
Divide \frac{14+2\sqrt{34}}{3} by \frac{5}{3} by multiplying \frac{14+2\sqrt{34}}{3} by the reciprocal of \frac{5}{3}.
x=\frac{14-2\sqrt{34}}{\frac{5}{3}\times 3}
Now solve the equation x=\frac{\frac{14}{3}±\frac{2\sqrt{34}}{3}}{\frac{5}{3}} when ± is minus. Subtract \frac{2\sqrt{34}}{3} from \frac{14}{3}.
x=\frac{14-2\sqrt{34}}{5}
Divide \frac{14-2\sqrt{34}}{3} by \frac{5}{3} by multiplying \frac{14-2\sqrt{34}}{3} by the reciprocal of \frac{5}{3}.
x=\frac{2\sqrt{34}+14}{5} x=\frac{14-2\sqrt{34}}{5}
The equation is now solved.
\frac{1}{2}x^{2}+1+\left(-\frac{2}{3}x^{2}+\frac{7}{3}x-1\right)^{2}=x^{2}+\left(-\frac{2}{3}x^{2}+\frac{7}{3}x\right)^{2}
Combine \frac{1}{4}x^{2} and \frac{1}{4}x^{2} to get \frac{1}{2}x^{2}.
\frac{1}{2}x^{2}+1+\frac{4}{9}x^{4}-\frac{28}{9}x^{3}+\frac{61}{9}x^{2}-\frac{14}{3}x+1=x^{2}+\left(-\frac{2}{3}x^{2}+\frac{7}{3}x\right)^{2}
Square -\frac{2}{3}x^{2}+\frac{7}{3}x-1.
\frac{131}{18}x^{2}+1+\frac{4}{9}x^{4}-\frac{28}{9}x^{3}-\frac{14}{3}x+1=x^{2}+\left(-\frac{2}{3}x^{2}+\frac{7}{3}x\right)^{2}
Combine \frac{1}{2}x^{2} and \frac{61}{9}x^{2} to get \frac{131}{18}x^{2}.
\frac{131}{18}x^{2}+2+\frac{4}{9}x^{4}-\frac{28}{9}x^{3}-\frac{14}{3}x=x^{2}+\left(-\frac{2}{3}x^{2}+\frac{7}{3}x\right)^{2}
Add 1 and 1 to get 2.
\frac{131}{18}x^{2}+2+\frac{4}{9}x^{4}-\frac{28}{9}x^{3}-\frac{14}{3}x=x^{2}+\frac{4}{9}\left(x^{2}\right)^{2}-\frac{28}{9}x^{2}x+\frac{49}{9}x^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(-\frac{2}{3}x^{2}+\frac{7}{3}x\right)^{2}.
\frac{131}{18}x^{2}+2+\frac{4}{9}x^{4}-\frac{28}{9}x^{3}-\frac{14}{3}x=x^{2}+\frac{4}{9}x^{4}-\frac{28}{9}x^{2}x+\frac{49}{9}x^{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{131}{18}x^{2}+2+\frac{4}{9}x^{4}-\frac{28}{9}x^{3}-\frac{14}{3}x=x^{2}+\frac{4}{9}x^{4}-\frac{28}{9}x^{3}+\frac{49}{9}x^{2}
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
\frac{131}{18}x^{2}+2+\frac{4}{9}x^{4}-\frac{28}{9}x^{3}-\frac{14}{3}x=\frac{58}{9}x^{2}+\frac{4}{9}x^{4}-\frac{28}{9}x^{3}
Combine x^{2} and \frac{49}{9}x^{2} to get \frac{58}{9}x^{2}.
\frac{131}{18}x^{2}+2+\frac{4}{9}x^{4}-\frac{28}{9}x^{3}-\frac{14}{3}x-\frac{58}{9}x^{2}=\frac{4}{9}x^{4}-\frac{28}{9}x^{3}
Subtract \frac{58}{9}x^{2} from both sides.
\frac{5}{6}x^{2}+2+\frac{4}{9}x^{4}-\frac{28}{9}x^{3}-\frac{14}{3}x=\frac{4}{9}x^{4}-\frac{28}{9}x^{3}
Combine \frac{131}{18}x^{2} and -\frac{58}{9}x^{2} to get \frac{5}{6}x^{2}.
\frac{5}{6}x^{2}+2+\frac{4}{9}x^{4}-\frac{28}{9}x^{3}-\frac{14}{3}x-\frac{4}{9}x^{4}=-\frac{28}{9}x^{3}
Subtract \frac{4}{9}x^{4} from both sides.
\frac{5}{6}x^{2}+2-\frac{28}{9}x^{3}-\frac{14}{3}x=-\frac{28}{9}x^{3}
Combine \frac{4}{9}x^{4} and -\frac{4}{9}x^{4} to get 0.
\frac{5}{6}x^{2}+2-\frac{28}{9}x^{3}-\frac{14}{3}x+\frac{28}{9}x^{3}=0
Add \frac{28}{9}x^{3} to both sides.
\frac{5}{6}x^{2}+2-\frac{14}{3}x=0
Combine -\frac{28}{9}x^{3} and \frac{28}{9}x^{3} to get 0.
\frac{5}{6}x^{2}-\frac{14}{3}x=-2
Subtract 2 from both sides. Anything subtracted from zero gives its negation.
\frac{\frac{5}{6}x^{2}-\frac{14}{3}x}{\frac{5}{6}}=-\frac{2}{\frac{5}{6}}
Divide both sides of the equation by \frac{5}{6}, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\left(-\frac{\frac{14}{3}}{\frac{5}{6}}\right)x=-\frac{2}{\frac{5}{6}}
Dividing by \frac{5}{6} undoes the multiplication by \frac{5}{6}.
x^{2}-\frac{28}{5}x=-\frac{2}{\frac{5}{6}}
Divide -\frac{14}{3} by \frac{5}{6} by multiplying -\frac{14}{3} by the reciprocal of \frac{5}{6}.
x^{2}-\frac{28}{5}x=-\frac{12}{5}
Divide -2 by \frac{5}{6} by multiplying -2 by the reciprocal of \frac{5}{6}.
x^{2}-\frac{28}{5}x+\left(-\frac{14}{5}\right)^{2}=-\frac{12}{5}+\left(-\frac{14}{5}\right)^{2}
Divide -\frac{28}{5}, the coefficient of the x term, by 2 to get -\frac{14}{5}. Then add the square of -\frac{14}{5} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{28}{5}x+\frac{196}{25}=-\frac{12}{5}+\frac{196}{25}
Square -\frac{14}{5} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{28}{5}x+\frac{196}{25}=\frac{136}{25}
Add -\frac{12}{5} to \frac{196}{25} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{14}{5}\right)^{2}=\frac{136}{25}
Factor x^{2}-\frac{28}{5}x+\frac{196}{25}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{14}{5}\right)^{2}}=\sqrt{\frac{136}{25}}
Take the square root of both sides of the equation.
x-\frac{14}{5}=\frac{2\sqrt{34}}{5} x-\frac{14}{5}=-\frac{2\sqrt{34}}{5}
Simplify.
x=\frac{2\sqrt{34}+14}{5} x=\frac{14-2\sqrt{34}}{5}
Add \frac{14}{5} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}