Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

3\left(x-1\right)\left(x+1\right)=12\left(\frac{1}{3}x+\frac{x-2}{2}\right)\left(\frac{2x-3}{3}-\frac{x-1}{2}\right)-2x^{2}
Multiply both sides of the equation by 12, the least common multiple of 4,3,2,6.
\left(3x-3\right)\left(x+1\right)=12\left(\frac{1}{3}x+\frac{x-2}{2}\right)\left(\frac{2x-3}{3}-\frac{x-1}{2}\right)-2x^{2}
Use the distributive property to multiply 3 by x-1.
3x^{2}-3=12\left(\frac{1}{3}x+\frac{x-2}{2}\right)\left(\frac{2x-3}{3}-\frac{x-1}{2}\right)-2x^{2}
Use the distributive property to multiply 3x-3 by x+1 and combine like terms.
3x^{2}-3=12\left(\frac{1}{3}x+\frac{x-2}{2}\right)\left(\frac{2\left(2x-3\right)}{6}-\frac{3\left(x-1\right)}{6}\right)-2x^{2}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3 and 2 is 6. Multiply \frac{2x-3}{3} times \frac{2}{2}. Multiply \frac{x-1}{2} times \frac{3}{3}.
3x^{2}-3=12\left(\frac{1}{3}x+\frac{x-2}{2}\right)\times \frac{2\left(2x-3\right)-3\left(x-1\right)}{6}-2x^{2}
Since \frac{2\left(2x-3\right)}{6} and \frac{3\left(x-1\right)}{6} have the same denominator, subtract them by subtracting their numerators.
3x^{2}-3=12\left(\frac{1}{3}x+\frac{x-2}{2}\right)\times \frac{4x-6-3x+3}{6}-2x^{2}
Do the multiplications in 2\left(2x-3\right)-3\left(x-1\right).
3x^{2}-3=12\left(\frac{1}{3}x+\frac{x-2}{2}\right)\times \frac{x-3}{6}-2x^{2}
Combine like terms in 4x-6-3x+3.
3x^{2}-3=2\left(x-3\right)\left(\frac{1}{3}x+\frac{x-2}{2}\right)-2x^{2}
Cancel out 6, the greatest common factor in 12 and 6.
3x^{2}-3=\frac{2}{3}\left(x-3\right)x+2\left(x-3\right)\times \frac{x-2}{2}-2x^{2}
Use the distributive property to multiply 2\left(x-3\right) by \frac{1}{3}x+\frac{x-2}{2} and combine like terms.
3x^{2}-3=\left(\frac{2}{3}x-2\right)x+2\left(x-3\right)\times \frac{x-2}{2}-2x^{2}
Use the distributive property to multiply \frac{2}{3} by x-3.
3x^{2}-3=\frac{2}{3}x^{2}-2x+2\left(x-3\right)\times \frac{x-2}{2}-2x^{2}
Use the distributive property to multiply \frac{2}{3}x-2 by x.
3x^{2}-3=\frac{2}{3}x^{2}-2x+\frac{2\left(x-2\right)}{2}\left(x-3\right)-2x^{2}
Express 2\times \frac{x-2}{2} as a single fraction.
3x^{2}-3=\frac{2}{3}x^{2}-2x+\left(x-2\right)\left(x-3\right)-2x^{2}
Cancel out 2 and 2.
3x^{2}-3=\frac{2}{3}x^{2}-2x+x^{2}-5x+6-2x^{2}
Use the distributive property to multiply x-2 by x-3 and combine like terms.
3x^{2}-3=\frac{5}{3}x^{2}-2x-5x+6-2x^{2}
Combine \frac{2}{3}x^{2} and x^{2} to get \frac{5}{3}x^{2}.
3x^{2}-3=\frac{5}{3}x^{2}-7x+6-2x^{2}
Combine -2x and -5x to get -7x.
3x^{2}-3=-\frac{1}{3}x^{2}-7x+6
Combine \frac{5}{3}x^{2} and -2x^{2} to get -\frac{1}{3}x^{2}.
3x^{2}-3+\frac{1}{3}x^{2}=-7x+6
Add \frac{1}{3}x^{2} to both sides.
\frac{10}{3}x^{2}-3=-7x+6
Combine 3x^{2} and \frac{1}{3}x^{2} to get \frac{10}{3}x^{2}.
\frac{10}{3}x^{2}-3+7x=6
Add 7x to both sides.
\frac{10}{3}x^{2}-3+7x-6=0
Subtract 6 from both sides.
\frac{10}{3}x^{2}-9+7x=0
Subtract 6 from -3 to get -9.
\frac{10}{3}x^{2}+7x-9=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-7±\sqrt{7^{2}-4\times \frac{10}{3}\left(-9\right)}}{2\times \frac{10}{3}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{10}{3} for a, 7 for b, and -9 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-7±\sqrt{49-4\times \frac{10}{3}\left(-9\right)}}{2\times \frac{10}{3}}
Square 7.
x=\frac{-7±\sqrt{49-\frac{40}{3}\left(-9\right)}}{2\times \frac{10}{3}}
Multiply -4 times \frac{10}{3}.
x=\frac{-7±\sqrt{49+120}}{2\times \frac{10}{3}}
Multiply -\frac{40}{3} times -9.
x=\frac{-7±\sqrt{169}}{2\times \frac{10}{3}}
Add 49 to 120.
x=\frac{-7±13}{2\times \frac{10}{3}}
Take the square root of 169.
x=\frac{-7±13}{\frac{20}{3}}
Multiply 2 times \frac{10}{3}.
x=\frac{6}{\frac{20}{3}}
Now solve the equation x=\frac{-7±13}{\frac{20}{3}} when ± is plus. Add -7 to 13.
x=\frac{9}{10}
Divide 6 by \frac{20}{3} by multiplying 6 by the reciprocal of \frac{20}{3}.
x=-\frac{20}{\frac{20}{3}}
Now solve the equation x=\frac{-7±13}{\frac{20}{3}} when ± is minus. Subtract 13 from -7.
x=-3
Divide -20 by \frac{20}{3} by multiplying -20 by the reciprocal of \frac{20}{3}.
x=\frac{9}{10} x=-3
The equation is now solved.
3\left(x-1\right)\left(x+1\right)=12\left(\frac{1}{3}x+\frac{x-2}{2}\right)\left(\frac{2x-3}{3}-\frac{x-1}{2}\right)-2x^{2}
Multiply both sides of the equation by 12, the least common multiple of 4,3,2,6.
\left(3x-3\right)\left(x+1\right)=12\left(\frac{1}{3}x+\frac{x-2}{2}\right)\left(\frac{2x-3}{3}-\frac{x-1}{2}\right)-2x^{2}
Use the distributive property to multiply 3 by x-1.
3x^{2}-3=12\left(\frac{1}{3}x+\frac{x-2}{2}\right)\left(\frac{2x-3}{3}-\frac{x-1}{2}\right)-2x^{2}
Use the distributive property to multiply 3x-3 by x+1 and combine like terms.
3x^{2}-3=12\left(\frac{1}{3}x+\frac{x-2}{2}\right)\left(\frac{2\left(2x-3\right)}{6}-\frac{3\left(x-1\right)}{6}\right)-2x^{2}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3 and 2 is 6. Multiply \frac{2x-3}{3} times \frac{2}{2}. Multiply \frac{x-1}{2} times \frac{3}{3}.
3x^{2}-3=12\left(\frac{1}{3}x+\frac{x-2}{2}\right)\times \frac{2\left(2x-3\right)-3\left(x-1\right)}{6}-2x^{2}
Since \frac{2\left(2x-3\right)}{6} and \frac{3\left(x-1\right)}{6} have the same denominator, subtract them by subtracting their numerators.
3x^{2}-3=12\left(\frac{1}{3}x+\frac{x-2}{2}\right)\times \frac{4x-6-3x+3}{6}-2x^{2}
Do the multiplications in 2\left(2x-3\right)-3\left(x-1\right).
3x^{2}-3=12\left(\frac{1}{3}x+\frac{x-2}{2}\right)\times \frac{x-3}{6}-2x^{2}
Combine like terms in 4x-6-3x+3.
3x^{2}-3=2\left(x-3\right)\left(\frac{1}{3}x+\frac{x-2}{2}\right)-2x^{2}
Cancel out 6, the greatest common factor in 12 and 6.
3x^{2}-3=\frac{2}{3}\left(x-3\right)x+2\left(x-3\right)\times \frac{x-2}{2}-2x^{2}
Use the distributive property to multiply 2\left(x-3\right) by \frac{1}{3}x+\frac{x-2}{2} and combine like terms.
3x^{2}-3=\left(\frac{2}{3}x-2\right)x+2\left(x-3\right)\times \frac{x-2}{2}-2x^{2}
Use the distributive property to multiply \frac{2}{3} by x-3.
3x^{2}-3=\frac{2}{3}x^{2}-2x+2\left(x-3\right)\times \frac{x-2}{2}-2x^{2}
Use the distributive property to multiply \frac{2}{3}x-2 by x.
3x^{2}-3=\frac{2}{3}x^{2}-2x+\frac{2\left(x-2\right)}{2}\left(x-3\right)-2x^{2}
Express 2\times \frac{x-2}{2} as a single fraction.
3x^{2}-3=\frac{2}{3}x^{2}-2x+\left(x-2\right)\left(x-3\right)-2x^{2}
Cancel out 2 and 2.
3x^{2}-3=\frac{2}{3}x^{2}-2x+x^{2}-5x+6-2x^{2}
Use the distributive property to multiply x-2 by x-3 and combine like terms.
3x^{2}-3=\frac{5}{3}x^{2}-2x-5x+6-2x^{2}
Combine \frac{2}{3}x^{2} and x^{2} to get \frac{5}{3}x^{2}.
3x^{2}-3=\frac{5}{3}x^{2}-7x+6-2x^{2}
Combine -2x and -5x to get -7x.
3x^{2}-3=-\frac{1}{3}x^{2}-7x+6
Combine \frac{5}{3}x^{2} and -2x^{2} to get -\frac{1}{3}x^{2}.
3x^{2}-3+\frac{1}{3}x^{2}=-7x+6
Add \frac{1}{3}x^{2} to both sides.
\frac{10}{3}x^{2}-3=-7x+6
Combine 3x^{2} and \frac{1}{3}x^{2} to get \frac{10}{3}x^{2}.
\frac{10}{3}x^{2}-3+7x=6
Add 7x to both sides.
\frac{10}{3}x^{2}+7x=6+3
Add 3 to both sides.
\frac{10}{3}x^{2}+7x=9
Add 6 and 3 to get 9.
\frac{\frac{10}{3}x^{2}+7x}{\frac{10}{3}}=\frac{9}{\frac{10}{3}}
Divide both sides of the equation by \frac{10}{3}, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\frac{7}{\frac{10}{3}}x=\frac{9}{\frac{10}{3}}
Dividing by \frac{10}{3} undoes the multiplication by \frac{10}{3}.
x^{2}+\frac{21}{10}x=\frac{9}{\frac{10}{3}}
Divide 7 by \frac{10}{3} by multiplying 7 by the reciprocal of \frac{10}{3}.
x^{2}+\frac{21}{10}x=\frac{27}{10}
Divide 9 by \frac{10}{3} by multiplying 9 by the reciprocal of \frac{10}{3}.
x^{2}+\frac{21}{10}x+\left(\frac{21}{20}\right)^{2}=\frac{27}{10}+\left(\frac{21}{20}\right)^{2}
Divide \frac{21}{10}, the coefficient of the x term, by 2 to get \frac{21}{20}. Then add the square of \frac{21}{20} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{21}{10}x+\frac{441}{400}=\frac{27}{10}+\frac{441}{400}
Square \frac{21}{20} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{21}{10}x+\frac{441}{400}=\frac{1521}{400}
Add \frac{27}{10} to \frac{441}{400} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{21}{20}\right)^{2}=\frac{1521}{400}
Factor x^{2}+\frac{21}{10}x+\frac{441}{400}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{21}{20}\right)^{2}}=\sqrt{\frac{1521}{400}}
Take the square root of both sides of the equation.
x+\frac{21}{20}=\frac{39}{20} x+\frac{21}{20}=-\frac{39}{20}
Simplify.
x=\frac{9}{10} x=-3
Subtract \frac{21}{20} from both sides of the equation.