Solve for x
x<-\frac{15}{7}
Graph
Share
Copied to clipboard
\frac{1}{4}\times 3+\frac{1}{4}\left(-1\right)x-2>\frac{1}{3}x
Use the distributive property to multiply \frac{1}{4} by 3-x.
\frac{3}{4}+\frac{1}{4}\left(-1\right)x-2>\frac{1}{3}x
Multiply \frac{1}{4} and 3 to get \frac{3}{4}.
\frac{3}{4}-\frac{1}{4}x-2>\frac{1}{3}x
Multiply \frac{1}{4} and -1 to get -\frac{1}{4}.
\frac{3}{4}-\frac{1}{4}x-\frac{8}{4}>\frac{1}{3}x
Convert 2 to fraction \frac{8}{4}.
\frac{3-8}{4}-\frac{1}{4}x>\frac{1}{3}x
Since \frac{3}{4} and \frac{8}{4} have the same denominator, subtract them by subtracting their numerators.
-\frac{5}{4}-\frac{1}{4}x>\frac{1}{3}x
Subtract 8 from 3 to get -5.
-\frac{5}{4}-\frac{1}{4}x-\frac{1}{3}x>0
Subtract \frac{1}{3}x from both sides.
-\frac{5}{4}-\frac{7}{12}x>0
Combine -\frac{1}{4}x and -\frac{1}{3}x to get -\frac{7}{12}x.
-\frac{7}{12}x>\frac{5}{4}
Add \frac{5}{4} to both sides. Anything plus zero gives itself.
x<\frac{5}{4}\left(-\frac{12}{7}\right)
Multiply both sides by -\frac{12}{7}, the reciprocal of -\frac{7}{12}. Since -\frac{7}{12} is negative, the inequality direction is changed.
x<\frac{5\left(-12\right)}{4\times 7}
Multiply \frac{5}{4} times -\frac{12}{7} by multiplying numerator times numerator and denominator times denominator.
x<\frac{-60}{28}
Do the multiplications in the fraction \frac{5\left(-12\right)}{4\times 7}.
x<-\frac{15}{7}
Reduce the fraction \frac{-60}{28} to lowest terms by extracting and canceling out 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}