Solve for x
x = \frac{315}{263} = 1\frac{52}{263} \approx 1.197718631
Graph
Share
Copied to clipboard
15\left(\frac{12x}{5}-\frac{8}{3}\right)+10\times 11x=50\left(\frac{4x}{15}-\frac{9}{10}\right)+110+15\times 3x
Multiply both sides of the equation by 60, the least common multiple of 4,5,3,6,15,10.
15\left(\frac{3\times 12x}{15}-\frac{8\times 5}{15}\right)+10\times 11x=50\left(\frac{4x}{15}-\frac{9}{10}\right)+110+15\times 3x
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 5 and 3 is 15. Multiply \frac{12x}{5} times \frac{3}{3}. Multiply \frac{8}{3} times \frac{5}{5}.
15\times \frac{3\times 12x-8\times 5}{15}+10\times 11x=50\left(\frac{4x}{15}-\frac{9}{10}\right)+110+15\times 3x
Since \frac{3\times 12x}{15} and \frac{8\times 5}{15} have the same denominator, subtract them by subtracting their numerators.
15\times \frac{36x-40}{15}+10\times 11x=50\left(\frac{4x}{15}-\frac{9}{10}\right)+110+15\times 3x
Do the multiplications in 3\times 12x-8\times 5.
\frac{15\left(36x-40\right)}{15}+10\times 11x=50\left(\frac{4x}{15}-\frac{9}{10}\right)+110+15\times 3x
Express 15\times \frac{36x-40}{15} as a single fraction.
36x-40+10\times 11x=50\left(\frac{4x}{15}-\frac{9}{10}\right)+110+15\times 3x
Cancel out 15 and 15.
36x-40+110x=50\left(\frac{4x}{15}-\frac{9}{10}\right)+110+15\times 3x
Multiply 10 and 11 to get 110.
146x-40=50\left(\frac{4x}{15}-\frac{9}{10}\right)+110+15\times 3x
Combine 36x and 110x to get 146x.
146x-40=50\left(\frac{2\times 4x}{30}-\frac{9\times 3}{30}\right)+110+15\times 3x
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 15 and 10 is 30. Multiply \frac{4x}{15} times \frac{2}{2}. Multiply \frac{9}{10} times \frac{3}{3}.
146x-40=50\times \frac{2\times 4x-9\times 3}{30}+110+15\times 3x
Since \frac{2\times 4x}{30} and \frac{9\times 3}{30} have the same denominator, subtract them by subtracting their numerators.
146x-40=50\times \frac{8x-27}{30}+110+15\times 3x
Do the multiplications in 2\times 4x-9\times 3.
146x-40=\frac{50\left(8x-27\right)}{30}+110+15\times 3x
Express 50\times \frac{8x-27}{30} as a single fraction.
146x-40=\frac{50\left(8x-27\right)}{30}+110+45x
Multiply 15 and 3 to get 45.
146x-40=\frac{400x-1350}{30}+110+45x
Use the distributive property to multiply 50 by 8x-27.
146x-40=\frac{40}{3}x-45+110+45x
Divide each term of 400x-1350 by 30 to get \frac{40}{3}x-45.
146x-40=\frac{40}{3}x+65+45x
Add -45 and 110 to get 65.
146x-40=\frac{175}{3}x+65
Combine \frac{40}{3}x and 45x to get \frac{175}{3}x.
146x-40-\frac{175}{3}x=65
Subtract \frac{175}{3}x from both sides.
\frac{263}{3}x-40=65
Combine 146x and -\frac{175}{3}x to get \frac{263}{3}x.
\frac{263}{3}x=65+40
Add 40 to both sides.
\frac{263}{3}x=105
Add 65 and 40 to get 105.
x=105\times \frac{3}{263}
Multiply both sides by \frac{3}{263}, the reciprocal of \frac{263}{3}.
x=\frac{105\times 3}{263}
Express 105\times \frac{3}{263} as a single fraction.
x=\frac{315}{263}
Multiply 105 and 3 to get 315.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}