Evaluate
\frac{29}{144}\approx 0.201388889
Factor
\frac{29}{2 ^ {4} \cdot 3 ^ {2}} = 0.2013888888888889
Share
Copied to clipboard
\frac{1}{4}\left(\frac{4}{12}+\frac{3}{12}\right)+\frac{1}{6}\times \frac{1}{3}
Least common multiple of 3 and 4 is 12. Convert \frac{1}{3} and \frac{1}{4} to fractions with denominator 12.
\frac{1}{4}\times \frac{4+3}{12}+\frac{1}{6}\times \frac{1}{3}
Since \frac{4}{12} and \frac{3}{12} have the same denominator, add them by adding their numerators.
\frac{1}{4}\times \frac{7}{12}+\frac{1}{6}\times \frac{1}{3}
Add 4 and 3 to get 7.
\frac{1\times 7}{4\times 12}+\frac{1}{6}\times \frac{1}{3}
Multiply \frac{1}{4} times \frac{7}{12} by multiplying numerator times numerator and denominator times denominator.
\frac{7}{48}+\frac{1}{6}\times \frac{1}{3}
Do the multiplications in the fraction \frac{1\times 7}{4\times 12}.
\frac{7}{48}+\frac{1\times 1}{6\times 3}
Multiply \frac{1}{6} times \frac{1}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{7}{48}+\frac{1}{18}
Do the multiplications in the fraction \frac{1\times 1}{6\times 3}.
\frac{21}{144}+\frac{8}{144}
Least common multiple of 48 and 18 is 144. Convert \frac{7}{48} and \frac{1}{18} to fractions with denominator 144.
\frac{21+8}{144}
Since \frac{21}{144} and \frac{8}{144} have the same denominator, add them by adding their numerators.
\frac{29}{144}
Add 21 and 8 to get 29.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}