Solve for x
x=60
Graph
Share
Copied to clipboard
\frac{1}{3}x+5=\frac{5}{13}x+\frac{5}{13}\times 5
Use the distributive property to multiply \frac{5}{13} by x+5.
\frac{1}{3}x+5=\frac{5}{13}x+\frac{5\times 5}{13}
Express \frac{5}{13}\times 5 as a single fraction.
\frac{1}{3}x+5=\frac{5}{13}x+\frac{25}{13}
Multiply 5 and 5 to get 25.
\frac{1}{3}x+5-\frac{5}{13}x=\frac{25}{13}
Subtract \frac{5}{13}x from both sides.
-\frac{2}{39}x+5=\frac{25}{13}
Combine \frac{1}{3}x and -\frac{5}{13}x to get -\frac{2}{39}x.
-\frac{2}{39}x=\frac{25}{13}-5
Subtract 5 from both sides.
-\frac{2}{39}x=\frac{25}{13}-\frac{65}{13}
Convert 5 to fraction \frac{65}{13}.
-\frac{2}{39}x=\frac{25-65}{13}
Since \frac{25}{13} and \frac{65}{13} have the same denominator, subtract them by subtracting their numerators.
-\frac{2}{39}x=-\frac{40}{13}
Subtract 65 from 25 to get -40.
x=-\frac{40}{13}\left(-\frac{39}{2}\right)
Multiply both sides by -\frac{39}{2}, the reciprocal of -\frac{2}{39}.
x=\frac{-40\left(-39\right)}{13\times 2}
Multiply -\frac{40}{13} times -\frac{39}{2} by multiplying numerator times numerator and denominator times denominator.
x=\frac{1560}{26}
Do the multiplications in the fraction \frac{-40\left(-39\right)}{13\times 2}.
x=60
Divide 1560 by 26 to get 60.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}