Solve for x
x\leq \frac{1}{2}
Graph
Share
Copied to clipboard
2-\left(2x-1\right)\geq 2x+1
Multiply both sides of the equation by 6, the least common multiple of 3,6. Since 6 is positive, the inequality direction remains the same.
2-2x-\left(-1\right)\geq 2x+1
To find the opposite of 2x-1, find the opposite of each term.
2-2x+1\geq 2x+1
The opposite of -1 is 1.
3-2x\geq 2x+1
Add 2 and 1 to get 3.
3-2x-2x\geq 1
Subtract 2x from both sides.
3-4x\geq 1
Combine -2x and -2x to get -4x.
-4x\geq 1-3
Subtract 3 from both sides.
-4x\geq -2
Subtract 3 from 1 to get -2.
x\leq \frac{-2}{-4}
Divide both sides by -4. Since -4 is negative, the inequality direction is changed.
x\leq \frac{1}{2}
Reduce the fraction \frac{-2}{-4} to lowest terms by extracting and canceling out -2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}