Solve for x
x=-16
Graph
Share
Copied to clipboard
\frac{1}{3}x+\frac{1}{3}\times 4-\frac{2}{5}\left(x+1\right)=2
Use the distributive property to multiply \frac{1}{3} by x+4.
\frac{1}{3}x+\frac{4}{3}-\frac{2}{5}\left(x+1\right)=2
Multiply \frac{1}{3} and 4 to get \frac{4}{3}.
\frac{1}{3}x+\frac{4}{3}-\frac{2}{5}x-\frac{2}{5}=2
Use the distributive property to multiply -\frac{2}{5} by x+1.
-\frac{1}{15}x+\frac{4}{3}-\frac{2}{5}=2
Combine \frac{1}{3}x and -\frac{2}{5}x to get -\frac{1}{15}x.
-\frac{1}{15}x+\frac{20}{15}-\frac{6}{15}=2
Least common multiple of 3 and 5 is 15. Convert \frac{4}{3} and \frac{2}{5} to fractions with denominator 15.
-\frac{1}{15}x+\frac{20-6}{15}=2
Since \frac{20}{15} and \frac{6}{15} have the same denominator, subtract them by subtracting their numerators.
-\frac{1}{15}x+\frac{14}{15}=2
Subtract 6 from 20 to get 14.
-\frac{1}{15}x=2-\frac{14}{15}
Subtract \frac{14}{15} from both sides.
-\frac{1}{15}x=\frac{30}{15}-\frac{14}{15}
Convert 2 to fraction \frac{30}{15}.
-\frac{1}{15}x=\frac{30-14}{15}
Since \frac{30}{15} and \frac{14}{15} have the same denominator, subtract them by subtracting their numerators.
-\frac{1}{15}x=\frac{16}{15}
Subtract 14 from 30 to get 16.
x=\frac{16}{15}\left(-15\right)
Multiply both sides by -15, the reciprocal of -\frac{1}{15}.
x=\frac{16\left(-15\right)}{15}
Express \frac{16}{15}\left(-15\right) as a single fraction.
x=\frac{-240}{15}
Multiply 16 and -15 to get -240.
x=-16
Divide -240 by 15 to get -16.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}