Solve for x
x=\frac{1}{32}=0.03125
Graph
Share
Copied to clipboard
\frac{1}{3}+\frac{1}{3}\left(-2\right)x=\frac{2}{7}\left(3x+1\right)
Use the distributive property to multiply \frac{1}{3} by 1-2x.
\frac{1}{3}+\frac{-2}{3}x=\frac{2}{7}\left(3x+1\right)
Multiply \frac{1}{3} and -2 to get \frac{-2}{3}.
\frac{1}{3}-\frac{2}{3}x=\frac{2}{7}\left(3x+1\right)
Fraction \frac{-2}{3} can be rewritten as -\frac{2}{3} by extracting the negative sign.
\frac{1}{3}-\frac{2}{3}x=\frac{2}{7}\times 3x+\frac{2}{7}
Use the distributive property to multiply \frac{2}{7} by 3x+1.
\frac{1}{3}-\frac{2}{3}x=\frac{2\times 3}{7}x+\frac{2}{7}
Express \frac{2}{7}\times 3 as a single fraction.
\frac{1}{3}-\frac{2}{3}x=\frac{6}{7}x+\frac{2}{7}
Multiply 2 and 3 to get 6.
\frac{1}{3}-\frac{2}{3}x-\frac{6}{7}x=\frac{2}{7}
Subtract \frac{6}{7}x from both sides.
\frac{1}{3}-\frac{32}{21}x=\frac{2}{7}
Combine -\frac{2}{3}x and -\frac{6}{7}x to get -\frac{32}{21}x.
-\frac{32}{21}x=\frac{2}{7}-\frac{1}{3}
Subtract \frac{1}{3} from both sides.
-\frac{32}{21}x=\frac{6}{21}-\frac{7}{21}
Least common multiple of 7 and 3 is 21. Convert \frac{2}{7} and \frac{1}{3} to fractions with denominator 21.
-\frac{32}{21}x=\frac{6-7}{21}
Since \frac{6}{21} and \frac{7}{21} have the same denominator, subtract them by subtracting their numerators.
-\frac{32}{21}x=-\frac{1}{21}
Subtract 7 from 6 to get -1.
x=-\frac{1}{21}\left(-\frac{21}{32}\right)
Multiply both sides by -\frac{21}{32}, the reciprocal of -\frac{32}{21}.
x=\frac{-\left(-21\right)}{21\times 32}
Multiply -\frac{1}{21} times -\frac{21}{32} by multiplying numerator times numerator and denominator times denominator.
x=\frac{21}{672}
Do the multiplications in the fraction \frac{-\left(-21\right)}{21\times 32}.
x=\frac{1}{32}
Reduce the fraction \frac{21}{672} to lowest terms by extracting and canceling out 21.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}