Solve for x
x>\frac{1}{2}
Graph
Share
Copied to clipboard
\frac{1}{3}+\frac{1}{3}\left(-2\right)x<\frac{3}{2}\left(2x-1\right)
Use the distributive property to multiply \frac{1}{3} by 1-2x.
\frac{1}{3}+\frac{-2}{3}x<\frac{3}{2}\left(2x-1\right)
Multiply \frac{1}{3} and -2 to get \frac{-2}{3}.
\frac{1}{3}-\frac{2}{3}x<\frac{3}{2}\left(2x-1\right)
Fraction \frac{-2}{3} can be rewritten as -\frac{2}{3} by extracting the negative sign.
\frac{1}{3}-\frac{2}{3}x<\frac{3}{2}\times 2x+\frac{3}{2}\left(-1\right)
Use the distributive property to multiply \frac{3}{2} by 2x-1.
\frac{1}{3}-\frac{2}{3}x<3x+\frac{3}{2}\left(-1\right)
Cancel out 2 and 2.
\frac{1}{3}-\frac{2}{3}x<3x-\frac{3}{2}
Multiply \frac{3}{2} and -1 to get -\frac{3}{2}.
\frac{1}{3}-\frac{2}{3}x-3x<-\frac{3}{2}
Subtract 3x from both sides.
\frac{1}{3}-\frac{11}{3}x<-\frac{3}{2}
Combine -\frac{2}{3}x and -3x to get -\frac{11}{3}x.
-\frac{11}{3}x<-\frac{3}{2}-\frac{1}{3}
Subtract \frac{1}{3} from both sides.
-\frac{11}{3}x<-\frac{9}{6}-\frac{2}{6}
Least common multiple of 2 and 3 is 6. Convert -\frac{3}{2} and \frac{1}{3} to fractions with denominator 6.
-\frac{11}{3}x<\frac{-9-2}{6}
Since -\frac{9}{6} and \frac{2}{6} have the same denominator, subtract them by subtracting their numerators.
-\frac{11}{3}x<-\frac{11}{6}
Subtract 2 from -9 to get -11.
x>-\frac{11}{6}\left(-\frac{3}{11}\right)
Multiply both sides by -\frac{3}{11}, the reciprocal of -\frac{11}{3}. Since -\frac{11}{3} is negative, the inequality direction is changed.
x>\frac{-11\left(-3\right)}{6\times 11}
Multiply -\frac{11}{6} times -\frac{3}{11} by multiplying numerator times numerator and denominator times denominator.
x>\frac{33}{66}
Do the multiplications in the fraction \frac{-11\left(-3\right)}{6\times 11}.
x>\frac{1}{2}
Reduce the fraction \frac{33}{66} to lowest terms by extracting and canceling out 33.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}