Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{1}{3}+\frac{1}{3}\left(-2\right)x<\frac{3}{2}\left(2x-1\right)
Use the distributive property to multiply \frac{1}{3} by 1-2x.
\frac{1}{3}+\frac{-2}{3}x<\frac{3}{2}\left(2x-1\right)
Multiply \frac{1}{3} and -2 to get \frac{-2}{3}.
\frac{1}{3}-\frac{2}{3}x<\frac{3}{2}\left(2x-1\right)
Fraction \frac{-2}{3} can be rewritten as -\frac{2}{3} by extracting the negative sign.
\frac{1}{3}-\frac{2}{3}x<\frac{3}{2}\times 2x+\frac{3}{2}\left(-1\right)
Use the distributive property to multiply \frac{3}{2} by 2x-1.
\frac{1}{3}-\frac{2}{3}x<3x+\frac{3}{2}\left(-1\right)
Cancel out 2 and 2.
\frac{1}{3}-\frac{2}{3}x<3x-\frac{3}{2}
Multiply \frac{3}{2} and -1 to get -\frac{3}{2}.
\frac{1}{3}-\frac{2}{3}x-3x<-\frac{3}{2}
Subtract 3x from both sides.
\frac{1}{3}-\frac{11}{3}x<-\frac{3}{2}
Combine -\frac{2}{3}x and -3x to get -\frac{11}{3}x.
-\frac{11}{3}x<-\frac{3}{2}-\frac{1}{3}
Subtract \frac{1}{3} from both sides.
-\frac{11}{3}x<-\frac{9}{6}-\frac{2}{6}
Least common multiple of 2 and 3 is 6. Convert -\frac{3}{2} and \frac{1}{3} to fractions with denominator 6.
-\frac{11}{3}x<\frac{-9-2}{6}
Since -\frac{9}{6} and \frac{2}{6} have the same denominator, subtract them by subtracting their numerators.
-\frac{11}{3}x<-\frac{11}{6}
Subtract 2 from -9 to get -11.
x>-\frac{11}{6}\left(-\frac{3}{11}\right)
Multiply both sides by -\frac{3}{11}, the reciprocal of -\frac{11}{3}. Since -\frac{11}{3} is negative, the inequality direction is changed.
x>\frac{-11\left(-3\right)}{6\times 11}
Multiply -\frac{11}{6} times -\frac{3}{11} by multiplying numerator times numerator and denominator times denominator.
x>\frac{33}{66}
Do the multiplications in the fraction \frac{-11\left(-3\right)}{6\times 11}.
x>\frac{1}{2}
Reduce the fraction \frac{33}{66} to lowest terms by extracting and canceling out 33.