Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{1}{3}\times \frac{3}{4}\times 2x^{2}\times \frac{2}{5}
Multiply x and x to get x^{2}.
\frac{1\times 3}{3\times 4}\times 2x^{2}\times \frac{2}{5}
Multiply \frac{1}{3} times \frac{3}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{4}\times 2x^{2}\times \frac{2}{5}
Cancel out 3 in both numerator and denominator.
\frac{2}{4}x^{2}\times \frac{2}{5}
Multiply \frac{1}{4} and 2 to get \frac{2}{4}.
\frac{1}{2}x^{2}\times \frac{2}{5}
Reduce the fraction \frac{2}{4} to lowest terms by extracting and canceling out 2.
\frac{1\times 2}{2\times 5}x^{2}
Multiply \frac{1}{2} times \frac{2}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{5}x^{2}
Cancel out 2 in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{3}\times \frac{3}{4}\times 2x^{2}\times \frac{2}{5})
Multiply x and x to get x^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1\times 3}{3\times 4}\times 2x^{2}\times \frac{2}{5})
Multiply \frac{1}{3} times \frac{3}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{4}\times 2x^{2}\times \frac{2}{5})
Cancel out 3 in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2}{4}x^{2}\times \frac{2}{5})
Multiply \frac{1}{4} and 2 to get \frac{2}{4}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{2}x^{2}\times \frac{2}{5})
Reduce the fraction \frac{2}{4} to lowest terms by extracting and canceling out 2.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1\times 2}{2\times 5}x^{2})
Multiply \frac{1}{2} times \frac{2}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{5}x^{2})
Cancel out 2 in both numerator and denominator.
2\times \frac{1}{5}x^{2-1}
The derivative of ax^{n} is nax^{n-1}.
\frac{2}{5}x^{2-1}
Multiply 2 times \frac{1}{5}.
\frac{2}{5}x^{1}
Subtract 1 from 2.
\frac{2}{5}x
For any term t, t^{1}=t.