Evaluate
\frac{-\sqrt{3}-2}{3}\approx -1.244016936
Share
Copied to clipboard
\frac{1}{3}\times 1+\sqrt{3}\sin(60)+4\cos(90)-\sqrt{\frac{2}{3}}\cos(45)-2\cos(60)-\frac{3}{2}\sin(90)
Get the value of \cos(0) from trigonometric values table.
\frac{1}{3}+\sqrt{3}\sin(60)+4\cos(90)-\sqrt{\frac{2}{3}}\cos(45)-2\cos(60)-\frac{3}{2}\sin(90)
Multiply \frac{1}{3} and 1 to get \frac{1}{3}.
\frac{1}{3}+\sqrt{3}\times \frac{\sqrt{3}}{2}+4\cos(90)-\sqrt{\frac{2}{3}}\cos(45)-2\cos(60)-\frac{3}{2}\sin(90)
Get the value of \sin(60) from trigonometric values table.
\frac{1}{3}+\frac{\sqrt{3}\sqrt{3}}{2}+4\cos(90)-\sqrt{\frac{2}{3}}\cos(45)-2\cos(60)-\frac{3}{2}\sin(90)
Express \sqrt{3}\times \frac{\sqrt{3}}{2} as a single fraction.
\frac{1}{3}+\frac{\sqrt{3}\sqrt{3}}{2}+4\times 0-\sqrt{\frac{2}{3}}\cos(45)-2\cos(60)-\frac{3}{2}\sin(90)
Get the value of \cos(90) from trigonometric values table.
\frac{1}{3}+\frac{\sqrt{3}\sqrt{3}}{2}+0-\sqrt{\frac{2}{3}}\cos(45)-2\cos(60)-\frac{3}{2}\sin(90)
Multiply 4 and 0 to get 0.
\frac{1}{3}+\frac{\sqrt{3}\sqrt{3}}{2}-\sqrt{\frac{2}{3}}\cos(45)-2\cos(60)-\frac{3}{2}\sin(90)
Add \frac{1}{3} and 0 to get \frac{1}{3}.
\frac{1}{3}+\frac{3}{2}-\sqrt{\frac{2}{3}}\cos(45)-2\cos(60)-\frac{3}{2}\sin(90)
Multiply \sqrt{3} and \sqrt{3} to get 3.
\frac{11}{6}-\sqrt{\frac{2}{3}}\cos(45)-2\cos(60)-\frac{3}{2}\sin(90)
Add \frac{1}{3} and \frac{3}{2} to get \frac{11}{6}.
\frac{11}{6}-\frac{\sqrt{2}}{\sqrt{3}}\cos(45)-2\cos(60)-\frac{3}{2}\sin(90)
Rewrite the square root of the division \sqrt{\frac{2}{3}} as the division of square roots \frac{\sqrt{2}}{\sqrt{3}}.
\frac{11}{6}-\frac{\sqrt{2}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}\cos(45)-2\cos(60)-\frac{3}{2}\sin(90)
Rationalize the denominator of \frac{\sqrt{2}}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{11}{6}-\frac{\sqrt{2}\sqrt{3}}{3}\cos(45)-2\cos(60)-\frac{3}{2}\sin(90)
The square of \sqrt{3} is 3.
\frac{11}{6}-\frac{\sqrt{6}}{3}\cos(45)-2\cos(60)-\frac{3}{2}\sin(90)
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
\frac{11}{6}-\frac{\sqrt{6}}{3}\times \frac{\sqrt{2}}{2}-2\cos(60)-\frac{3}{2}\sin(90)
Get the value of \cos(45) from trigonometric values table.
\frac{11}{6}-\frac{\sqrt{6}\sqrt{2}}{3\times 2}-2\cos(60)-\frac{3}{2}\sin(90)
Multiply \frac{\sqrt{6}}{3} times \frac{\sqrt{2}}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{11}{6}-\frac{\sqrt{2}\sqrt{3}\sqrt{2}}{3\times 2}-2\cos(60)-\frac{3}{2}\sin(90)
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
\frac{11}{6}-\frac{2\sqrt{3}}{3\times 2}-2\cos(60)-\frac{3}{2}\sin(90)
Multiply \sqrt{2} and \sqrt{2} to get 2.
\frac{11}{6}-\frac{2\sqrt{3}}{6}-2\cos(60)-\frac{3}{2}\sin(90)
Multiply 3 and 2 to get 6.
\frac{11}{6}-\frac{1}{3}\sqrt{3}-2\cos(60)-\frac{3}{2}\sin(90)
Divide 2\sqrt{3} by 6 to get \frac{1}{3}\sqrt{3}.
\frac{11}{6}-\frac{1}{3}\sqrt{3}-2\times \frac{1}{2}-\frac{3}{2}\sin(90)
Get the value of \cos(60) from trigonometric values table.
\frac{11}{6}-\frac{1}{3}\sqrt{3}-1-\frac{3}{2}\sin(90)
Multiply 2 and \frac{1}{2} to get 1.
\frac{5}{6}-\frac{1}{3}\sqrt{3}-\frac{3}{2}\sin(90)
Subtract 1 from \frac{11}{6} to get \frac{5}{6}.
\frac{5}{6}-\frac{1}{3}\sqrt{3}-\frac{3}{2}\times 1
Get the value of \sin(90) from trigonometric values table.
\frac{5}{6}-\frac{1}{3}\sqrt{3}-\frac{3}{2}
Multiply \frac{3}{2} and 1 to get \frac{3}{2}.
-\frac{2}{3}-\frac{1}{3}\sqrt{3}
Subtract \frac{3}{2} from \frac{5}{6} to get -\frac{2}{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}