Evaluate
\frac{x}{\left(x-1\right)\left(2x-1\right)}
Differentiate w.r.t. x
\frac{1-2x^{2}}{\left(\left(x-1\right)\left(2x-1\right)\right)^{2}}
Graph
Share
Copied to clipboard
\frac{x}{\left(2x-1\right)\left(x-1\right)}
Multiply \frac{1}{2x-1} times \frac{x}{x-1} by multiplying numerator times numerator and denominator times denominator.
\frac{x}{2x^{2}-2x-x+1}
Apply the distributive property by multiplying each term of 2x-1 by each term of x-1.
\frac{x}{2x^{2}-3x+1}
Combine -2x and -x to get -3x.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x}{\left(2x-1\right)\left(x-1\right)})
Multiply \frac{1}{2x-1} times \frac{x}{x-1} by multiplying numerator times numerator and denominator times denominator.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x}{2x^{2}-2x-x+1})
Apply the distributive property by multiplying each term of 2x-1 by each term of x-1.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x}{2x^{2}-3x+1})
Combine -2x and -x to get -3x.
\frac{\left(2x^{2}-3x^{1}+1\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{1})-x^{1}\frac{\mathrm{d}}{\mathrm{d}x}(2x^{2}-3x^{1}+1)}{\left(2x^{2}-3x^{1}+1\right)^{2}}
For any two differentiable functions, the derivative of the quotient of two functions is the denominator times the derivative of the numerator minus the numerator times the derivative of the denominator, all divided by the denominator squared.
\frac{\left(2x^{2}-3x^{1}+1\right)x^{1-1}-x^{1}\left(2\times 2x^{2-1}-3x^{1-1}\right)}{\left(2x^{2}-3x^{1}+1\right)^{2}}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
\frac{\left(2x^{2}-3x^{1}+1\right)x^{0}-x^{1}\left(4x^{1}-3x^{0}\right)}{\left(2x^{2}-3x^{1}+1\right)^{2}}
Simplify.
\frac{2x^{2}x^{0}-3x^{1}x^{0}+x^{0}-x^{1}\left(4x^{1}-3x^{0}\right)}{\left(2x^{2}-3x^{1}+1\right)^{2}}
Multiply 2x^{2}-3x^{1}+1 times x^{0}.
\frac{2x^{2}x^{0}-3x^{1}x^{0}+x^{0}-\left(x^{1}\times 4x^{1}+x^{1}\left(-3\right)x^{0}\right)}{\left(2x^{2}-3x^{1}+1\right)^{2}}
Multiply x^{1} times 4x^{1}-3x^{0}.
\frac{2x^{2}-3x^{1}+x^{0}-\left(4x^{1+1}-3x^{1}\right)}{\left(2x^{2}-3x^{1}+1\right)^{2}}
To multiply powers of the same base, add their exponents.
\frac{2x^{2}-3x^{1}+x^{0}-\left(4x^{2}-3x^{1}\right)}{\left(2x^{2}-3x^{1}+1\right)^{2}}
Simplify.
\frac{-2x^{2}+x^{0}}{\left(2x^{2}-3x^{1}+1\right)^{2}}
Combine like terms.
\frac{-2x^{2}+x^{0}}{\left(2x^{2}-3x+1\right)^{2}}
For any term t, t^{1}=t.
\frac{-2x^{2}+1}{\left(2x^{2}-3x+1\right)^{2}}
For any term t except 0, t^{0}=1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}