Evaluate
1
Factor
1
Share
Copied to clipboard
\frac{1}{2x}-\frac{1}{x+y}\left(\frac{x+y}{2x}+\frac{\left(-x-y\right)\times 2x}{2x}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply -x-y times \frac{2x}{2x}.
\frac{1}{2x}-\frac{1}{x+y}\times \frac{x+y+\left(-x-y\right)\times 2x}{2x}
Since \frac{x+y}{2x} and \frac{\left(-x-y\right)\times 2x}{2x} have the same denominator, add them by adding their numerators.
\frac{1}{2x}-\frac{1}{x+y}\times \frac{x+y-2x^{2}-2yx}{2x}
Do the multiplications in x+y+\left(-x-y\right)\times 2x.
\frac{1}{2x}-\frac{x+y-2x^{2}-2yx}{\left(x+y\right)\times 2x}
Multiply \frac{1}{x+y} times \frac{x+y-2x^{2}-2yx}{2x} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{2x}-\frac{\left(-2x+1\right)\left(x+y\right)}{2x\left(x+y\right)}
Factor the expressions that are not already factored in \frac{x+y-2x^{2}-2yx}{\left(x+y\right)\times 2x}.
\frac{1}{2x}-\frac{-2x+1}{2x}
Cancel out x+y in both numerator and denominator.
\frac{1-\left(-2x+1\right)}{2x}
Since \frac{1}{2x} and \frac{-2x+1}{2x} have the same denominator, subtract them by subtracting their numerators.
\frac{1+2x-1}{2x}
Do the multiplications in 1-\left(-2x+1\right).
\frac{2x}{2x}
Combine like terms in 1+2x-1.
1
Cancel out 2x in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}