Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. a
Tick mark Image

Similar Problems from Web Search

Share

\frac{1}{2a-3}-\frac{2\left(-1\right)}{2a-3}+\frac{18}{9-4a^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2a-3 and 3-2a is 2a-3. Multiply \frac{2}{3-2a} times \frac{-1}{-1}.
\frac{1-2\left(-1\right)}{2a-3}+\frac{18}{9-4a^{2}}
Since \frac{1}{2a-3} and \frac{2\left(-1\right)}{2a-3} have the same denominator, subtract them by subtracting their numerators.
\frac{1+2}{2a-3}+\frac{18}{9-4a^{2}}
Do the multiplications in 1-2\left(-1\right).
\frac{3}{2a-3}+\frac{18}{9-4a^{2}}
Do the calculations in 1+2.
\frac{3}{2a-3}+\frac{18}{\left(-2a-3\right)\left(2a-3\right)}
Factor 9-4a^{2}.
\frac{3\left(-2a-3\right)}{\left(-2a-3\right)\left(2a-3\right)}+\frac{18}{\left(-2a-3\right)\left(2a-3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2a-3 and \left(-2a-3\right)\left(2a-3\right) is \left(-2a-3\right)\left(2a-3\right). Multiply \frac{3}{2a-3} times \frac{-2a-3}{-2a-3}.
\frac{3\left(-2a-3\right)+18}{\left(-2a-3\right)\left(2a-3\right)}
Since \frac{3\left(-2a-3\right)}{\left(-2a-3\right)\left(2a-3\right)} and \frac{18}{\left(-2a-3\right)\left(2a-3\right)} have the same denominator, add them by adding their numerators.
\frac{-6a-9+18}{\left(-2a-3\right)\left(2a-3\right)}
Do the multiplications in 3\left(-2a-3\right)+18.
\frac{-6a+9}{\left(-2a-3\right)\left(2a-3\right)}
Combine like terms in -6a-9+18.
\frac{3\left(-2a+3\right)}{\left(-2a-3\right)\left(2a-3\right)}
Factor the expressions that are not already factored in \frac{-6a+9}{\left(-2a-3\right)\left(2a-3\right)}.
\frac{-3\left(2a-3\right)}{\left(-2a-3\right)\left(2a-3\right)}
Extract the negative sign in 3-2a.
\frac{-3}{-2a-3}
Cancel out 2a-3 in both numerator and denominator.