Solve for f
f = -\frac{30492}{311} = -98\frac{14}{311} \approx -98.045016077
Share
Copied to clipboard
28f\times \frac{1}{28}-28f\times \frac{1}{21.78}=28
Variable f cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 28f, the least common multiple of 28,f.
f-28f\times \frac{1}{21.78}=28
Cancel out 28 and 28.
f-28f\times \frac{100}{2178}=28
Expand \frac{1}{21.78} by multiplying both numerator and the denominator by 100.
f-28f\times \frac{50}{1089}=28
Reduce the fraction \frac{100}{2178} to lowest terms by extracting and canceling out 2.
f-\frac{28\times 50}{1089}f=28
Express 28\times \frac{50}{1089} as a single fraction.
f-\frac{1400}{1089}f=28
Multiply 28 and 50 to get 1400.
-\frac{311}{1089}f=28
Combine f and -\frac{1400}{1089}f to get -\frac{311}{1089}f.
f=28\left(-\frac{1089}{311}\right)
Multiply both sides by -\frac{1089}{311}, the reciprocal of -\frac{311}{1089}.
f=\frac{28\left(-1089\right)}{311}
Express 28\left(-\frac{1089}{311}\right) as a single fraction.
f=\frac{-30492}{311}
Multiply 28 and -1089 to get -30492.
f=-\frac{30492}{311}
Fraction \frac{-30492}{311} can be rewritten as -\frac{30492}{311} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}